MultiNLI|自然语言处理数据集|文本匹配数据集
收藏
- MultiNLI数据集首次发表,由纽约大学、华盛顿大学和艾伦人工智能研究所共同发布。该数据集旨在促进自然语言推理(NLI)任务的研究,包含433,000个句子对,涵盖了多种文本类型和风格。
- MultiNLI数据集在多个自然语言处理(NLP)研究中得到广泛应用,成为评估模型在不同文本领域中推理能力的重要基准。
- 随着预训练语言模型(如BERT、GPT-2)的兴起,MultiNLI数据集被用于微调这些模型,以提高其在自然语言推理任务中的表现。
- MultiNLI数据集继续在NLP研究中发挥重要作用,特别是在跨领域文本理解的研究中,成为评估模型泛化能力的关键资源。
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
CatMeows
该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。
huggingface 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
RFUAV
RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。
arXiv 收录
Drone-type dataset
Drone-type数据集是由卡塔尔的Supreme Committee for Delivery and Legacy (SC)支持的研究团队创建,旨在为无人机检测和跟踪提供一个基准。该数据集包含7000张图像,涵盖了七种不同类型的无人机,图像来自YouTube视频,具有不同尺度和视野。数据集的创建过程包括从视频中提取图像并手动进行边界框标注。该数据集主要应用于无人机检测领域,旨在解决无人机类型识别的问题,提高检测系统的准确性和效率。
arXiv 收录