five

肇庆市德庆县发展和改革局信用审批明细信息|信用审批数据集|数据分析数据集

收藏
开放广东2023-09-18 更新2024-02-29 收录
信用审批
数据分析
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
该数据为2023年肇庆市德庆县发展和改革局信用审批明细信息,对变动情况进行跟踪、采集、分析、预测、公布的活动,并采取持续监测等手段,加强对数据分析,提高数据的时效性和准确性。
提供机构:
肇庆市
创建时间:
2023-10-13
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

Comparative Toxicogenomics Database (CTD)

Comparative Toxicogenomics Database(CTD)是一个公开的综合性数据库,专注于研究环境暴露与人类健康之间的关系。该数据库整合了化学物质、基因、疾病、通路等多维度信息,支持用户查询基因与疾病、化学物质与疾病以及化学物质与基因之间的相互作用,为毒理学研究和环境健康效应研究提供了重要资源。其最新成果包括2025年发布的20周年更新版本,进一步扩展了数据内容和功能。

ctdbase.org 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

DIV2K

displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录