five

BurnedAreaUAV Dataset (v1)|森林火灾监测数据集|无人机技术数据集

收藏
Mendeley Data2024-06-29 更新2024-06-29 收录
森林火灾监测
无人机技术
下载链接:
https://zenodo.org/record/7925620
下载链接
链接失效反馈
资源简介:
General Description A manually annotated dataset, consisting of the video frames and segmentation masks, for segmentation of forest fire burned area based on a video captured by a UAV. Data Collection The BurnedAreaUAV dataset derives from a video captured at the coordinates' latitude 41° 23’ 37.56" and longitude -7° 37’ 0.32", at Torre do Pinhão, in northern Portugal in an area characterized by shrubby to herbaceous vegetation. The video was captured during the evolution of a prescribed fire using a DJI Phantom 4 PRO UAV equipped with an FC6310S RGB camera. Video Overview The video captures a prescribed fire where the burned area increases progressively. At the beginning of the sequence, a significant portion of the UAV’s sensor field of view is already burned, and the burned area expands as time goes by. The video was collected by an RGB sensor installed on a drone while keeping the drone in a nearly static stationary stance during the data collection duration. The video has about 15 minutes and a frame rate of 25 frames per second, amounting to 22500 images. It was collected by an RGB sensor installed on a drone while keeping the drone in a nearly static stationary stance during the data collection duration. Throughout this period, the progression of the burned area is observed. The original video has a resolution of 720×1280 and is stored in H.264 (or MPEG-4 Part 10) format. No audio signal was collected. Manual Annotation The annotation was done every 100 frames, which corresponds to a sampling period of 4 seconds. Two classes are considered: burned_area and unburned_area. This annotation has been done for the entire length of the video. The training set consists of 226 frame-image pairs and the test set of 23. The training and test annotations are offset by 50 frames. We plan to expand this dataset in the future. File Organization (BurnedAreaUAV_v1.rar) The data is available in PNG, JSON (Labelme format), and WKT (segmentation masks only). The raw video data is also made available. Please ignore BurnedAreaUAV_dataset.rar file and consider BurnedAreaUAV_dataset_v1.rar only. MP4_video (folder) -- original_prescribed_burn_video.mp4 PNG (folder) train (folder) frames (folder) -- frame_000000.png (raster image) -- frame_000100.png -- frame_000200.png ... msks (folder) -- mask_000000.png -- mask_000100.png -- mask_000200.png ... test (folder) frames (folder) -- frame_020250.png -- frame_020350.png -- frame_020350.png ... msks (folder) -- mask_020250.png -- mask_020350.png -- mask_020350.png ... JSON (folder) -- train_valid_json (folder) -- frame_000000.json (Labelme format) -- frame_000100.json -- frame_000200.json -- frame_000300.json ... -- test_json (folder) -- frame_020250.json -- frame_020350.json -- frame_020450.json ... WKT_files (folder) -- train_valid.wkt (list of masks polygons) -- test.wkt Acknowledgements This dataset results from activities developed in the context of partially projects funded by FCT - Fundação para a Ciência e a Tecnologia, I.P., through projects MIT-EXPL/ACC/0057/2021 and UIDB/04524/2020, and under the Scientific Employment Stimulus - Institutional Call - CEECINST/00051/2018. For additional information, please visit our GitHub repository with related work and the ESS DataLab website.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

人民日报语料库

该数据集包含2023年5月至2024年4月期间人民日报的全部文章,以JSON格式保存,每篇文章包含URL、标题和内容。

github 收录

CMAB

CMAB数据集由清华大学创建,是中国首个全国范围的多属性建筑数据集,涵盖了3667个自然城市,总面积达213亿平方米。该数据集通过集成多源数据,如高分辨率Google Earth影像和街景图像,生成了建筑的屋顶、高度、功能、年龄和质量等属性。数据集的创建过程结合了地理人工智能框架和机器学习模型,确保了数据的高准确性。CMAB数据集主要应用于城市规划和可持续发展研究,旨在提供详细的城市3D物理和社会结构信息,支持城市化进程和政府决策。

arXiv 收录

Set5

Set5数据集是一个包含5张图像的图像超分辨率测试数据集,包括'baby', 'bird', 'butterfly', 'head', 'woman',通常用于评估图像超分辨率模型的性能。

huggingface 收录