five

OECD Economic Outlook|经济预测数据集|宏观经济分析数据集

收藏
www.oecd.org2024-10-24 收录
经济预测
宏观经济分析
下载链接:
https://www.oecd.org/economic-outlook/
下载链接
链接失效反馈
资源简介:
OECD Economic Outlook 是一个由经济合作与发展组织(OECD)发布的经济预测和分析数据集。该数据集涵盖了全球多个国家和地区的宏观经济指标,包括GDP增长率、失业率、通货膨胀率、财政和货币政策等。数据集定期更新,提供对未来经济趋势的预测和分析。
提供机构:
www.oecd.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
OECD Economic Outlook数据集的构建基于经济合作与发展组织(OECD)的广泛经济分析和预测。该数据集汇集了来自全球多个国家和地区的经济指标,包括但不限于国内生产总值(GDP)、失业率、通货膨胀率等。数据来源涵盖官方统计机构、国际组织报告以及OECD自身的研究成果。通过严格的筛选和校验流程,确保数据的准确性和一致性。
特点
OECD Economic Outlook数据集以其全面性和时效性著称。它不仅涵盖了发达经济体,还包括新兴市场和发展中国家,提供了全球经济状况的全面视角。数据集中的指标经过标准化处理,便于跨国家和地区进行比较分析。此外,该数据集定期更新,确保用户能够获取最新的经济趋势和预测。
使用方法
OECD Economic Outlook数据集适用于多种经济分析和研究场景。用户可以通过该数据集进行宏观经济趋势分析、政策效果评估以及国际经济比较研究。数据集提供多种格式的下载选项,支持Excel、CSV等常见格式,便于用户在不同分析工具中使用。此外,OECD还提供了详细的数据字典和使用指南,帮助用户快速上手和深入挖掘数据价值。
背景与挑战
背景概述
OECD Economic Outlook数据集是由经济合作与发展组织(OECD)发布的经济预测和分析报告的核心组成部分。自1961年以来,OECD定期发布这些报告,旨在为全球经济政策制定者提供关键的经济指标和预测。该数据集涵盖了全球多个国家和地区的宏观经济数据,包括GDP增长率、失业率、通货膨胀率等,为国际经济研究和政策分析提供了重要的数据支持。通过OECD Economic Outlook,研究人员和政策制定者能够更好地理解全球经济动态,预测未来经济趋势,从而制定更为有效的经济政策。
当前挑战
OECD Economic Outlook数据集在构建过程中面临多项挑战。首先,数据收集的广泛性和时效性要求极高,需要从多个国家和地区的官方统计机构获取最新数据,这涉及到复杂的国际合作和数据协调问题。其次,经济预测的准确性依赖于对大量变量的综合分析,包括政治、社会和技术等多方面因素,这增加了模型构建和预测的复杂性。此外,全球经济环境的快速变化,如金融危机、贸易战等突发事件,也对数据集的更新和预测提出了更高的要求,需要不断调整和优化预测模型以保持其准确性和可靠性。
发展历史
创建时间与更新
OECD Economic Outlook数据集首次发布于1961年,由经济合作与发展组织(OECD)创建,旨在提供全球经济趋势的全面分析。该数据集定期更新,通常每年发布两次,分别在春季和秋季,以反映最新的经济数据和预测。
重要里程碑
OECD Economic Outlook的重要里程碑包括1970年代初期的石油危机分析,这一时期的数据集提供了对全球经济波动和政策应对的深入见解。此外,2008年全球金融危机期间,该数据集成为政策制定者和学者研究经济复苏路径的重要参考。近年来,OECD Economic Outlook在数字化转型和可持续发展领域的分析也取得了显著进展,为全球经济治理提供了新的视角。
当前发展情况
当前,OECD Economic Outlook数据集继续在全球经济研究中发挥核心作用。它不仅提供了对主要经济体增长趋势的详细分析,还深入探讨了新兴市场的发展动态和全球经济一体化的影响。此外,该数据集在气候变化和绿色经济政策方面的研究日益增多,为全球可持续发展目标的实现提供了科学依据。OECD Economic Outlook的持续更新和扩展,使其成为国际经济政策制定和学术研究不可或缺的资源。
发展历程
  • OECD Economic Outlook首次发表,标志着OECD开始定期发布关于全球经济趋势和政策的权威报告。
    1962年
  • OECD Economic Outlook首次引入宏观经济模型,增强了其对经济预测的科学性和准确性。
    1974年
  • OECD Economic Outlook开始涵盖更多新兴市场经济体,扩大了其全球经济分析的覆盖范围。
    1985年
  • OECD Economic Outlook引入互联网发布,使得全球用户可以更便捷地获取其经济分析和预测。
    1997年
  • OECD Economic Outlook在金融危机期间发挥了重要作用,提供了关于危机影响和应对策略的深入分析。
    2008年
  • OECD Economic Outlook开始关注可持续发展目标,将其经济分析与全球可持续发展议题相结合。
    2015年
常用场景
经典使用场景
在宏观经济研究领域,OECD Economic Outlook数据集被广泛用于分析和预测全球经济趋势。该数据集涵盖了多个国家和地区的经济指标,包括GDP增长率、失业率、通货膨胀率等,为经济学家和政策制定者提供了详尽的数据支持。通过这些数据,研究者可以深入探讨不同经济体之间的相互影响,以及宏观经济政策的效果。
实际应用
在实际应用中,OECD Economic Outlook数据集被各国政府和国际组织广泛用于制定和调整经济政策。例如,中央银行利用该数据集来监控通货膨胀和失业率,从而决定货币政策的方向。国际金融机构如世界银行和国际货币基金组织也依赖这些数据来评估全球经济健康状况,并为发展中国家提供经济援助和政策建议。此外,企业界也利用这些数据进行市场分析和战略规划,以应对全球经济环境的变化。
衍生相关工作
OECD Economic Outlook数据集的广泛应用催生了大量相关研究和工作。例如,许多学者基于该数据集开发了新的经济预测模型,提高了预测的准确性和可靠性。同时,该数据集也促进了跨学科研究,如经济学与社会学的结合,探讨经济变化对社会结构的影响。此外,随着大数据和人工智能技术的发展,越来越多的研究开始利用这些技术对OECD Economic Outlook数据进行深度分析,以发现隐藏的经济规律和趋势。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录