five

Data from: Living on the edge: multiscale habitat selection by cheetahs in a human-wildlife landscape|猎豹栖息地选择数据集|人类活动影响数据集

收藏
DataONE2018-07-10 更新2024-06-08 收录
猎豹栖息地选择
人类活动影响
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Animals select habitats that will ultimately optimise their fitness through access to favourable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom-up effects, such as availability, and top-down effects such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease of large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human-wildlife landscape at multiple spatial scales. Cheetahs are a wide-ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co-occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semi-closed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analysing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720m - 1440m) than environmental variables (90m-180m), suggesting that anthropogenic pressures affect habitat selection at a home-range level, whilst environmental variables influence site-level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semi-closed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semi-closed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human-wildlife landscape.
创建时间:
2018-07-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录

Global Water Quality Dataset

该数据集包含了全球多个地区的水质监测数据,涵盖了多种水质参数,如pH值、溶解氧、电导率、温度等。数据集旨在帮助研究人员和政策制定者了解全球水质的现状和变化趋势。

www.kaggle.com 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录