five

World Bank - World Governance Indicators|治理指标数据集|政策分析数据集

收藏
databank.worldbank.org2024-10-25 收录
治理指标
政策分析
下载链接:
https://databank.worldbank.org/source/world-governance-indicators
下载链接
链接失效反馈
资源简介:
世界银行的世界治理指标(World Governance Indicators, WGI)数据集提供了全球各国在六个治理维度上的评估数据,包括言论和问责、政治稳定和无暴力、政府效率、监管质量、法治以及腐败控制。这些指标基于多个来源的数据,旨在帮助政策制定者和研究人员了解和改善治理质量。
提供机构:
databank.worldbank.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
世界银行世界治理指标数据集的构建基于全球范围内的多源数据,包括调查数据、专家评估和行政记录。该数据集通过综合这些多源数据,采用统计方法和模型,对各国的治理质量进行量化评估。具体而言,数据集涵盖了六个维度的治理指标:言论与问责、政治稳定与无暴力、政府效能、监管质量、法治和腐败控制。每个维度的指标通过加权平均法计算得出,确保了数据的综合性和代表性。
特点
世界银行世界治理指标数据集具有高度的权威性和广泛的应用性。其特点在于覆盖全球多个国家和地区,提供了详尽的治理质量评估。数据集的时间跨度较长,能够反映出各国治理水平的动态变化。此外,该数据集的指标设计科学,涵盖了治理的多个关键维度,为政策制定者和研究者提供了丰富的分析工具。
使用方法
世界银行世界治理指标数据集可广泛应用于政策分析、学术研究和国际比较。研究者可以通过该数据集分析各国治理水平的差异及其影响因素,为政策制定提供科学依据。同时,该数据集也可用于跨国比较研究,帮助理解不同国家治理模式的优劣。此外,国际组织和非政府组织可以利用该数据集评估援助项目的有效性,优化资源配置。
背景与挑战
背景概述
世界银行的世界治理指标(World Bank - World Governance Indicators, WGI)数据集自1996年由世界银行发起,旨在量化和评估全球各国在治理方面的表现。该数据集涵盖了六个关键维度:言论与问责、政治稳定与无暴力、政府效能、监管质量、法治以及腐败控制。通过这些指标,WGI为政策制定者、研究人员和国际组织提供了一个全面的工具,用以分析和比较不同国家和地区的治理水平。自发布以来,WGI已成为全球治理研究的重要参考,对推动治理透明度和效率提升产生了深远影响。
当前挑战
尽管WGI数据集在治理研究领域具有重要地位,但其构建过程中仍面临诸多挑战。首先,治理指标的量化本身就是一个复杂的过程,涉及多源数据的整合与标准化。其次,不同国家和地区的数据可获得性和质量差异较大,导致部分指标的准确性受到质疑。此外,治理概念的多维性和动态性使得单一指标难以全面反映实际情况。最后,数据更新频率和时效性也是一个持续的挑战,尤其是在政治和经济环境快速变化的背景下,确保数据的及时性和相关性显得尤为重要。
发展历史
创建时间与更新
World Bank - World Governance Indicators数据集由世界银行于1996年首次发布,旨在提供全球各国治理质量的量化指标。该数据集定期更新,最新版本通常每年发布一次,以反映最新的治理趋势和变化。
重要里程碑
该数据集的重要里程碑包括2003年引入的六个核心治理指标,即言论与问责、政治稳定与无暴力、政府效率、监管质量、法治和腐败控制。这些指标的引入极大地丰富了数据集的内容,使其成为全球治理研究的重要工具。此外,2010年,世界银行对数据集进行了重大更新,引入了更多的数据源和更复杂的统计方法,进一步提升了数据集的可靠性和全面性。
当前发展情况
当前,World Bank - World Governance Indicators数据集已成为全球治理研究领域的基石,广泛应用于学术研究、政策制定和国际援助项目中。数据集不仅提供了对各国治理质量的深入洞察,还促进了全球治理指标的标准化和比较研究。随着数据源的不断扩展和分析方法的持续改进,该数据集将继续在全球治理评估和政策制定中发挥关键作用,推动全球治理水平的提升和国际合作的深化。
发展历程
  • 世界银行首次启动世界治理指标项目,旨在提供全球各国治理质量的量化评估。
    1996年
  • 世界银行发布了首个世界治理指标数据集,涵盖了六个核心治理维度:言论与问责、政治稳定、政府效率、监管质量、法治和腐败控制。
    1999年
  • 世界治理指标数据集进行了首次重大更新,增加了更多的国家和地区的数据,并改进了数据收集和分析方法。
    2003年
  • 世界银行进一步扩展了世界治理指标的数据覆盖范围,包括了更多的低收入和中等收入国家。
    2006年
  • 世界治理指标数据集引入了新的数据源和方法,以提高数据的准确性和可靠性。
    2010年
  • 世界银行发布了世界治理指标的最新版本,强调了数据透明度和方法论的改进。
    2014年
  • 世界治理指标数据集再次更新,增加了对新兴经济体和转型国家的关注,并继续优化数据分析工具。
    2017年
  • 世界银行继续发布世界治理指标的年度更新,强调了在全球化背景下治理指标的重要性,并提供了更多的数据可视化工具。
    2020年
常用场景
经典使用场景
在全球治理研究领域,World Bank - World Governance Indicators(世界银行世界治理指标)数据集被广泛用于评估和分析各国在治理质量方面的表现。该数据集涵盖了六个关键维度:言论自由、政治稳定、政府效能、监管质量、法治水平和腐败控制。研究者利用这些指标,可以深入探讨不同国家在治理结构和政策执行上的差异,从而为政策制定者和国际组织提供有价值的参考。
衍生相关工作
基于World Bank - World Governance Indicators数据集,许多后续研究工作得以展开。例如,学者们开发了多种模型来预测治理质量的变化趋势,以及治理质量对经济增长的影响。此外,该数据集还激发了关于治理指标构建方法的讨论,推动了治理评估方法的创新。这些衍生工作不仅深化了对全球治理的理解,还为政策实践提供了新的工具和视角。
数据集最近研究
最新研究方向
在全球治理指标(World Bank - World Governance Indicators)领域,最新研究方向聚焦于利用大数据和机器学习技术,以提升对全球治理绩效的预测和评估能力。研究者们通过整合多源数据,构建复杂的模型,旨在更准确地识别和量化各国在政治稳定、法治水平、腐败控制等方面的表现。此外,跨学科研究逐渐增多,经济学、政治学和社会学等领域的学者共同探讨如何通过政策干预改善治理质量。这些研究不仅有助于国际组织和各国政府制定更有效的治理策略,也为全球治理理论的发展提供了新的视角和方法。
相关研究论文
  • 1
    The Worldwide Governance Indicators: Methodology and Analytical IssuesWorld Bank · 2011年
  • 2
    Governance Matters XV: Aggregate and Individual Governance Indicators for 1996-2019World Bank · 2020年
  • 3
    The Worldwide Governance Indicators: A Critical ReviewUniversity of Oxford · 2015年
  • 4
    Governance and Growth: A Review of the EvidenceWorld Bank · 2012年
  • 5
    Governance Indicators: Where Are We, Where Should We Be Going?World Bank · 2007年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

glaive-function-calling-openai

该数据集包含用于训练和评估语言模型在函数调用能力上的对话示例。数据集包括一个完整的函数调用示例集合和一个精选的子集,专注于最常用的函数。数据集的结构包括一个完整的数据集和几个测试子集。每个记录都是一个JSON对象,包含对话消息、可用函数定义和实际的函数调用。数据集还包括最常用的函数分布信息,并提供了加载和评估数据集的示例代码。

huggingface 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录