five

OECD Gender Data Portal|性别平等数据集|数据分析数据集

收藏
www.oecd.org2024-10-25 收录
性别平等
数据分析
下载链接:
https://www.oecd.org/gender/data/
下载链接
链接失效反馈
资源简介:
OECD Gender Data Portal 是一个综合性的数据平台,提供了关于性别平等和女性赋权的广泛数据。该数据集包括了经济参与、教育、健康、政治参与和暴力等多个领域的性别相关指标。数据涵盖了OECD成员国以及部分非成员国,旨在帮助政策制定者和研究人员分析和理解性别平等的现状和进展。
提供机构:
www.oecd.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
OECD性别数据门户(OECD Gender Data Portal)数据集的构建基于经济合作与发展组织(OECD)成员国和合作伙伴国家的官方统计数据。该数据集通过系统性地收集和整合来自各国统计局、国际组织和研究机构的多源数据,涵盖了性别平等的多个维度,包括教育、就业、健康、政治参与等。数据收集过程严格遵循国际统计标准,确保数据的准确性和一致性。
特点
OECD性别数据门户数据集的特点在于其全面性和时效性。该数据集不仅提供了详尽的性别相关指标,还通过可视化工具和交互式图表,使用户能够直观地分析和比较不同国家和地区的性别平等状况。此外,数据集还定期更新,确保用户能够获取最新的性别平等进展信息。
使用方法
OECD性别数据门户数据集适用于多种研究目的,包括性别平等政策评估、社会经济分析和国际比较研究。用户可以通过数据门户的在线平台直接访问和下载数据,支持多种数据格式。此外,数据集还提供了丰富的文档和指南,帮助用户理解和使用数据。对于学术研究者和政策制定者而言,该数据集是一个宝贵的资源,能够支持深入的性别平等分析和决策。
背景与挑战
背景概述
OECD Gender Data Portal(经合组织性别数据门户)是由经济合作与发展组织(OECD)开发的一个综合性数据平台,旨在提供全球范围内关于性别平等和女性赋权的详尽数据。该数据集的构建始于2010年代初,由OECD的社会政策部门主导,旨在解决性别数据缺乏标准化和可比性的问题。通过整合来自各国政府、国际组织和研究机构的数据,OECD Gender Data Portal为政策制定者、研究人员和公众提供了一个权威的性别数据来源,极大地推动了全球性别平等议程的进展。
当前挑战
尽管OECD Gender Data Portal在提供性别数据方面取得了显著成就,但其构建过程中仍面临诸多挑战。首先,数据来源的多样性和质量不一,导致数据整合和标准化过程复杂。其次,不同国家和地区的性别统计方法和定义存在差异,增加了数据比较的难度。此外,数据更新频率和覆盖范围的局限性也影响了数据集的实时性和全面性。这些挑战要求OECD在数据收集、处理和发布过程中不断优化方法,以确保数据的准确性和可靠性。
发展历史
创建时间与更新
OECD Gender Data Portal由经济合作与发展组织(OECD)于2015年创建,旨在提供全球性别平等相关的数据和分析。该数据集定期更新,最新数据涵盖至2022年,确保信息的时效性和准确性。
重要里程碑
OECD Gender Data Portal的创建标志着性别平等数据分析领域的一个重要里程碑。其首次整合了来自多个国家和地区的性别相关数据,为政策制定者、研究人员和公众提供了全面的数据支持。2018年,该数据门户引入了交互式数据可视化工具,显著提升了用户的数据探索体验。此外,2020年,OECD Gender Data Portal增加了对新冠疫情对性别平等影响的专题分析,进一步扩展了其应用范围和影响力。
当前发展情况
当前,OECD Gender Data Portal已成为全球性别平等研究的重要资源,其数据被广泛应用于学术研究、政策制定和社会倡导中。该数据集不仅提供了基础的性别统计数据,还通过不断更新的专题分析,反映了全球性别平等的最新动态。此外,OECD Gender Data Portal的开放数据政策促进了数据的广泛共享和利用,推动了性别平等议题的全球对话和合作。未来,该数据集有望继续扩展其数据覆盖范围和分析深度,为实现全球性别平等目标提供更强有力的支持。
发展历程
  • OECD Gender Data Portal首次发布,旨在提供关于性别平等和女性经济参与的全面数据。
    2017年
  • 数据门户进行了首次重大更新,增加了新的数据指标和可视化工具,以增强用户体验。
    2018年
  • OECD Gender Data Portal开始与联合国妇女署等国际组织合作,共享数据资源,推动全球性别平等议程。
    2019年
  • 在COVID-19疫情期间,数据门户特别更新了关于性别影响的数据,帮助政策制定者更好地理解疫情对性别平等的冲击。
    2020年
  • OECD Gender Data Portal引入了新的交互式功能,使用户能够更深入地探索和分析性别数据。
    2021年
常用场景
经典使用场景
在性别平等研究领域,OECD Gender Data Portal数据集被广泛用于分析和比较不同国家和地区的性别差异。该数据集涵盖了教育、就业、健康、政治参与等多个维度,为学者和政策制定者提供了详尽的性别统计数据。通过这些数据,研究者能够深入探讨性别不平等的根源及其对社会经济发展的影响。
衍生相关工作
基于OECD Gender Data Portal数据集,衍生了许多经典的研究和政策分析工作。例如,有研究利用该数据集分析了教育领域的性别差异,揭示了女性在高等教育中的参与度及其对未来职业发展的影响。此外,还有研究探讨了性别工资差距的跨国差异,为缩小性别收入差距提供了政策建议。这些相关工作进一步丰富了性别平等研究的理论和实践。
数据集最近研究
最新研究方向
在性别平等与社会发展领域,OECD Gender Data Portal数据集的最新研究方向聚焦于跨国家与跨时间段的性别差异分析。研究者们利用该数据集,深入探讨了教育、就业、健康及政治参与等多个维度中的性别不平等现象。通过对比不同国家和地区的性别数据,研究揭示了性别平等政策的有效性及其在全球范围内的差异。此外,该数据集还被用于预测未来性别平等趋势,为政策制定者提供了科学依据,以推动更具包容性的社会发展策略。
相关研究论文
  • 1
    OECD Gender Data Portal: A Comprehensive Resource for Gender Equality AnalysisOECD · 2019年
  • 2
    Gender Equality and Economic Growth: Evidence from the OECD Gender Data PortalUniversity of Cambridge · 2021年
  • 3
    The Impact of Gender Inequality on Economic Development: Insights from the OECD Gender Data PortalUniversity of Oxford · 2020年
  • 4
    Gender Gaps in Labour Market Participation: Evidence from the OECD Gender Data PortalHarvard University · 2022年
  • 5
    Gender Equality Policies and Their Effects: A Comparative Analysis Using the OECD Gender Data PortalStanford University · 2023年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录