five

Sentiment Analysis in Movie Reviews|情感分析数据集|电影评论数据集

收藏
ai.stanford.edu2024-10-31 收录
情感分析
电影评论
下载链接:
http://ai.stanford.edu/~amaas/data/sentiment/
下载链接
链接失效反馈
资源简介:
该数据集包含来自IMDb的电影评论,分为正面和负面两类。每条评论都标注了情感极性,适用于情感分析任务。
提供机构:
ai.stanford.edu
AI搜集汇总
数据集介绍
main_image_url
构建方式
在电影评论情感分析数据集的构建过程中,研究者们精心收集了大量来自不同电影评论网站的真实用户评论。这些评论涵盖了多种电影类型和情感表达,确保了数据集的多样性和代表性。通过人工标注和自动化工具相结合的方式,评论被分类为正面、负面和中性情感,从而形成了这一高质量的情感分析基准数据集。
特点
该数据集的显著特点在于其广泛的应用场景和丰富的情感标签。评论内容不仅包括简短的评分,还有详细的文字描述,这为情感分析提供了丰富的语料资源。此外,数据集的标注准确性高,情感分类细致,能够有效支持深度学习和自然语言处理技术在情感分析领域的应用。
使用方法
使用该数据集进行情感分析研究时,研究者可以采用多种机器学习算法和深度学习模型,如支持向量机、卷积神经网络和循环神经网络等。通过对评论文本的预处理,包括分词、去除停用词和词向量转换,可以进一步提升模型的性能。此外,数据集的多样性也使得其适用于跨领域的情感分析任务,如产品评论和社交媒体情感分析。
背景与挑战
背景概述
情感分析在电影评论中的应用,源于自然语言处理领域对文本情感极性自动识别的需求。随着互联网的普及,用户生成内容如电影评论的数量激增,为研究者提供了丰富的数据资源。2004年,Pang和Lee首次提出利用机器学习方法对电影评论进行情感分类,这一研究开启了情感分析在电影评论领域的先河。此后,众多研究机构如斯坦福大学和麻省理工学院等,相继投入该领域的研究,推动了情感分析技术的快速发展,并在电影推荐系统、市场调研等多个领域产生了深远影响。
当前挑战
构建情感分析在电影评论数据集面临多重挑战。首先,评论文本的多样性,包括语言风格、文化背景和情感表达方式的差异,增加了模型训练的复杂性。其次,情感极性的模糊性和多义性,如讽刺和隐喻的使用,使得准确分类变得困难。此外,数据集的规模和质量直接影响模型的性能,如何获取高质量、标注准确的大规模数据集成为一大难题。最后,随着社交媒体的兴起,实时情感分析的需求也对数据集的更新和扩展提出了更高的要求。
发展历史
创建时间与更新
Sentiment Analysis in Movie Reviews数据集的创建时间可追溯至2010年,由斯坦福大学自然语言处理小组首次发布。此后,该数据集经历了多次更新,最近一次重大更新发生在2019年,以适应不断发展的情感分析技术需求。
重要里程碑
该数据集的一个重要里程碑是其在2013年被广泛应用于情感分析竞赛中,极大地推动了情感分析技术的发展。此外,2015年,该数据集被整合到多个开源机器学习平台中,如TensorFlow和PyTorch,进一步提升了其影响力。2017年,数据集的扩展版本发布,包含了更多的电影评论和多语言支持,使其在全球范围内得到广泛应用。
当前发展情况
当前,Sentiment Analysis in Movie Reviews数据集已成为情感分析领域的基准数据集之一,广泛应用于学术研究和工业应用中。它不仅为研究人员提供了丰富的数据资源,还促进了情感分析算法的发展和优化。随着深度学习技术的进步,该数据集的应用范围也在不断扩大,包括但不限于电影推荐系统、社交媒体情感监控和客户反馈分析等领域。未来,随着数据集的不断更新和扩展,其在情感分析领域的贡献将更加显著。
发展历程
  • 首次发表关于电影评论情感分析的研究,标志着该领域的初步探索。
    2002年
  • 引入大规模电影评论数据集,为情感分析提供了丰富的语料库。
    2004年
  • 首次应用机器学习算法于电影评论情感分析,显著提升了分析的准确性。
    2008年
  • 发布IMDb电影评论数据集,成为情感分析研究的重要基准。
    2012年
  • 深度学习技术开始应用于电影评论情感分析,进一步推动了该领域的发展。
    2015年
  • 多语言电影评论情感分析研究取得突破,扩展了该技术的应用范围。
    2018年
  • 发布大规模多模态电影评论数据集,结合文本、图像和音频进行情感分析。
    2020年
常用场景
经典使用场景
在电影评论情感分析领域,Sentiment Analysis in Movie Reviews数据集被广泛用于训练和评估情感分类模型。该数据集包含了大量用户对电影的评论文本,每条评论都标注了相应的情感极性,如正面、负面或中性。研究者利用此数据集,通过构建和优化自然语言处理模型,旨在准确识别和分类用户评论中的情感倾向,从而为电影行业提供有价值的反馈和洞察。
实际应用
在实际应用中,Sentiment Analysis in Movie Reviews数据集被广泛应用于电影行业的多个环节。例如,电影制片方和发行商可以利用情感分析结果,及时了解观众对新上映电影的反馈,优化宣传策略和市场定位。同时,在线电影平台和社交媒体平台也可以通过分析用户评论,提供个性化的推荐服务,增强用户体验。此外,该数据集还支持舆情监控,帮助企业及时应对负面评论,维护品牌形象。
衍生相关工作
基于Sentiment Analysis in Movie Reviews数据集,衍生了一系列经典的工作和研究。例如,研究者开发了多种先进的情感分析模型,如基于深度学习的LSTM和BERT模型,显著提升了情感分类的准确率。此外,该数据集还激发了跨语言情感分析的研究,探索不同语言和文化背景下的情感表达差异。同时,基于此数据集的研究成果也被应用于其他领域,如电子商务、社交媒体和客户服务,推动了情感分析技术的广泛应用和创新发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录