five

Toulouse Campus Surveillance Dataset: scenarios, soundtracks, synchronized videos with overlapping and disjoint views|监控数据数据集|行为分析数据集

收藏
Mendeley Data2024-03-27 更新2024-06-28 收录
监控数据
行为分析
下载链接:
https://zenodo.org/record/3697806
下载链接
链接失效反馈
资源简介:
The Toulouse Campus surveillance Dataset, named ToCaDa, contains two sets of 25 temporally synchronized videos corresponding to two scripted scenarios. With the help of about 50 persons (actors and camera holders), these videos were shot on July 17th 2017 at 9:50 a.m. and 11:04 a.m. respectively. Among the cameras: • 9 were located inside the main building and shot from the windows at different floors. All these cameras are focusing the car park and the path leading to the main entrance of the building with large overlapping fields of view. • 8 were located in front of the building and filmed it with large overlapping fields of view. • 8 cameras were arranged further, scattered around the university campus. Each of their views is disjoint from all the others. About 20 actors were asked to follow two realistic scenarios by performing scripted actions, like driving a car, walking, entering or leaving a building, or holding an item in hand while being filmed. In addition to ordinary actions, some suspicious behaviors are present. Irregularities: Due to the wide variety of devices used during the shooting of the two scenarios, issues were encountered on some cameras, leading to videos where a few seconds are lacking. To ensure temporal synchronization between videos, black frames were added on the missing intervals of time. We list these particular videos and their lacking times below: F1C3: the first 66 seconds are missing. F1C5: the first 2 seconds are missing. F1C8: the first 3 seconds are missing. F1C13: the first 10 seconds are missing. F1C15: the first second is missing. F1C19: the first second is missing. F2C1: the video is accelerated and only lasts a few seconds. We thus did not provide it. F2C6: lacks from 4:01 to 4:12 and from 4:25 to 4:28. F2C16: lack from 5:15 to 5:26. Some videos were recorded with mobile devices whose pixel resolution was lower than 1920 x 1080: F1C3 and F2C3: pixel resolution is 1280 x 720. F1C4 and F2C4: pixel resolution is 640 x 480. F1C15 and F2C15: pixel resolution is 1280 x 720. F1C20 and F2C20: pixel resolution is 1440 x 1080. More detailed information about the position of the cameras can be found on the following link: http://ubee.enseeiht.fr/dokuwiki/doku.php?id=public:tocada Citation T. Malon, G. Roman-Jimenez, P. Guyot, S. Chambon, V. Charvillat, A. Crouzil, A. Péninou, J. Pinquier, F. Sèdes and C. Sénac, Toulouse campus surveillance dataset: scenarios, soundtracks, synchronized videos with overlapping and disjoint views, ACM Multimedia Systems Conference, 2018.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

Water temperature and current velocity from surface drifter SVP_9524404

This dataset is about: Water temperature and current velocity from surface drifter SVP_9524404.

doi.pangaea.de 收录

NIST Thermochemical Database

NIST Thermochemical Database(NIST热化学数据库)是一个包含大量热化学数据的数据集,涵盖了各种化学物质的热力学性质,如焓、熵、自由能等。该数据库由美国国家标准与技术研究院(NIST)维护,旨在为科学研究和工业应用提供准确的热化学数据。

webbook.nist.gov 收录

Spatial_Navigation

这是一个专注于四个代表性任务的多模态增强数据集,这些任务需要不同程度的视觉参与和跨模态交互,包括拼图组装、空间导航、视觉搜索和图表重聚焦。

huggingface 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录