ApolloScape|自动驾驶数据集|3D感知数据集
收藏
- ApolloScape数据集首次发布,由百度Apollo团队推出,旨在为自动驾驶研究提供高质量的多模态数据。
- ApolloScape数据集在CVPR 2019上进行了详细介绍,展示了其在自动驾驶领域的广泛应用和重要性。
- ApolloScape数据集更新了版本,增加了更多的场景和数据类型,进一步提升了其在自动驾驶研究中的价值。
- 1ApolloScape Dataset for Autonomous DrivingTsinghua University · 2018年
- 2A Survey on 3D Object Detection Methods for Autonomous Driving ApplicationsUniversity of Waterloo · 2020年
- 3Multi-Task Learning for Autonomous Driving: A SurveyUniversity of Michigan · 2021年
- 4Deep Learning for 3D Point Clouds: A SurveyUniversity of Surrey · 2020年
- 5A Comprehensive Survey on Deep Learning for 3D Object DetectionUniversity of California, Berkeley · 2021年
2000-2018年中国典型生态系统植物生长节律数据
该数据集涵盖了森林、草地、荒漠、沼泽、农田生态系统2000年-2020年CERN长期定位监测的植物物候数据和主要作生育期数据,包括木本植物、草本植物、水稻、小麦、玉米物候数据表,木本植物数据表有18个台站、291个物种的芽开放期、展叶期、开花始期、开花盛期、果实或种子成熟期、叶秋季变色期和落叶期共计3814条记录;草本植物数据表有22个台站、312个物种的萌动期、开花期、果实或种子成熟期、种子散布期和黄枯期共计3032条数据;水稻数据表有9个台站的出苗期、拔节期、蜡熟期等10个生育期共551条记录;小麦数据表有9个台站不同生育期382条记录;玉米数据表有18个台站不同生育期532条数据。
地球大数据科学工程 收录
Obstacle-dataset OD
该数据集用于十五种障碍物检测,包含VOC格式和YOLO训练的.txt文件,数据集中的图像来自VOC数据集、COCO数据集、TT100K数据集以及作者团队实地收集的图片。
github 收录
中国空气质量数据集(2014-2020年)
数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。
国家地球系统科学数据中心 收录
ALFA
ALFA数据集由卡内基梅隆大学机器人学院创建,专注于固定翼无人机的控制表面故障和异常检测。数据集包含47次自主飞行中的故障场景,涵盖了发动机、方向舵、副翼和升降舵等多种故障类型,总飞行时间为66分钟正常飞行和13分钟故障后飞行。数据集的创建涉及对飞行器的硬件和软件进行定制修改,以模拟各种故障情况。该数据集主要用于无人机故障检测和隔离(FDI)以及异常检测(AD)研究,旨在提高自主飞行操作的安全性。
arXiv 收录
CHARLS
中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。
charls.pku.edu.cn 收录