five

ILSVRC2015_DET|计算机视觉数据集|图像识别数据集

收藏
魔搭社区2025-05-15 更新2024-08-31 收录
计算机视觉
图像识别
下载链接:
https://modelscope.cn/datasets/OmniData/ILSVRC2015_DET
下载链接
链接失效反馈
资源简介:
displayName: ILSVRC2015 DET labelTypes: - Box2D license: - Unknown mediaTypes: - Image paperUrl: "" publishDate: "2015" publishUrl: http://image-net.org/challenges/LSVRC/2015/ publisher: - Carnegie Mellon University - Stanford University - University of Michigan - University of North Carolina at Chapel Hill tags: - Human taskTypes: - Object Detection --- # 数据集介绍 ## 简介 训练和验证数据集与 ILSVRC2014 相同。共有 456567 张图像用于训练。每个同义词集(类别)的正图像数量范围从 461 到 67513。负图像数量范围从每个同义词集 42945 到 70626。有 20121 个验证图像。所有图像均为 JPEG 格式。通过添加 11142 个新图像来刷新测试数据集。该文件包含 51294 (40152 + 11142) 张图像和 test.txt 文件。测试新文件仅包含 11142 个新图像和 test.txt 文件。 ## 类定义 ``` n02672831: accordion n02691156: airplane n02219486: ant n02419796: antelope n07739125: apple n02454379: armadillo n07718747: artichoke n02764044: axe n02766320: baby bed n02769748: backpack n07693725: bagel n02777292: balance beam n07753592: banana n02786058: band aid n02787622: banjo n02799071: baseball n02802426: basketball n02807133: bathing cap n02815834: beaker n02131653: bear n02206856: bee n07720875: bell pepper n02828884: bench n02834778: bicycle n02840245: binder n01503061: bird n02870880: bookshelf n02879718: bow n02883205: bow tie n02880940: bowl n02892767: brassiere n07880968: burrito n02924116: bus n02274259: butterfly n02437136: camel n02951585: can opener n02958343: car n02970849: cart n02402425: cattle n02992211: cello n01784675: centipede n03000684: chain saw n03001627: chair n03017168: chime n03062245: cocktail shaker n03063338: coffee maker n03085013: computer keyboard n03793489: computer mouse n03109150: corkscrew n03128519: cream n03134739: croquet ball n03141823: crutch n07718472: cucumber n03797390: cup or mug n03188531: diaper n03196217: digital clock n03207941: dishwasher n02084071: dog n02121808: domestic cat n02268443: dragonfly n03249569: drum n03255030: dumbbell n03271574: electric fan n02503517: elephant n03314780: face powder n07753113: fig n03337140: filing cabinet n03991062: flower pot n03372029: flute n02118333: fox n03394916: french horn n01639765: frog n03400231: frying pan n02510455: giant panda n01443537: goldfish n03445777: golf ball n03445924: golfcart n07583066: guacamole n03467517: guitar n03483316: hair dryer n03476991: hair spray n07697100: hamburger n03481172: hammer n02342885: hamster n03494278: harmonica n03495258: harp n03124170: hat with a wide brim n07714571: head cabbage n03513137: helmet n02398521: hippopotamus n03535780: horizontal bar n02374451: horse n07697537: hotdog n03584254: iPod n01990800: isopod n01910747: jellyfish n01882714: koala bear n03633091: ladle n02165456: ladybug n03636649: lamp n03642806: laptop n07749582: lemon n02129165: lion n03676483: lipstick n01674464: lizard n01982650: lobster n03710721: maillot n03720891: maraca n03759954: microphone n03761084: microwave n03764736: milk can n03770439: miniskirt n02484322: monkey n03790512: motorcycle n07734744: mushroom n03804744: nail n03814639: neck brace n03838899: oboe n07747607: orange n02444819: otter n03908618: pencil box n03908714: pencil sharpener n03916031: perfume n00007846: person n03928116: piano n07753275: pineapple n03942813: ping-pong ball n03950228: pitcher n07873807: pizza n03958227: plastic bag n03961711: plate rack n07768694: pomegranate n07615774: popsicle n02346627: porcupine n03995372: power drill n07695742: pretzel n04004767: printer n04019541: puck n04023962: punching bag n04026417: purse n02324045: rabbit n04039381: racket n01495701: ray n02509815: red panda n04070727: refrigerator n04074963: remote control n04116512: rubber eraser n04118538: rugby ball n04118776: ruler n04131690: salt or pepper shaker n04141076: saxophone n01770393: scorpion n04154565: screwdriver n02076196: seal n02411705: sheep n04228054: ski n02445715: skunk n01944390: snail n01726692: snake n04252077: snowmobile n04252225: snowplow n04254120: soap dispenser n04254680: soccer ball n04256520: sofa n04270147: spatula n02355227: squirrel n02317335: starfish n04317175: stethoscope n04330267: stove n04332243: strainer n07745940: strawberry n04336792: stretcher n04356056: sunglasses n04371430: swimming trunks n02395003: swine n04376876: syringe n04379243: table n04392985: tape player n04409515: tennis ball n01776313: tick n04591157: tie n02129604: tiger n04442312: toaster n06874185: traffic light n04468005: train n04487394: trombone n03110669: trumpet n01662784: turtle n03211117: tv or monitor n04509417: unicycle n04517823: vacuum n04536866: violin n04540053: volleyball n04542943: waffle iron n04554684: washer n04557648: water bottle n04530566: watercraft n02062744: whale n04591713: wine bottle n02391049: zebra ``` ## 引文 ``` @article{ILSVRC15, Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei}, Title = {{ImageNet Large Scale Visual Recognition Challenge}}, Year = {2015}, journal = {International Journal of Computer Vision (IJCV)}, doi = {10.1007/s11263-015-0816-y}, volume={115}, number={3}, pages={211-252} } ``` ## Download dataset :modelscope-code[]{type="git"}
提供机构:
maas
创建时间:
2024-07-17
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录