five

Zillow Rent Index, 2010-Present|房地产租赁数据集|市场价格分析数据集

收藏
www.kaggle.com2017-03-03 更新2025-01-15 收录
房地产租赁
市场价格分析
下载链接:
https://www.kaggle.com/zillow/rent-index
下载链接
链接失效反馈
资源简介:
# Context Zillow operates an industry-leading economics and analytics bureau led by Zillow’s Chief Economist, Dr. Stan Humphries. At Zillow, Dr. Humphries and his team of economists and data analysts produce extensive housing data and analysis covering more than 500 markets nationwide. Zillow Research produces various real estate, rental and mortgage-related metrics and publishes unique analyses on current topics and trends affecting the housing market. At Zillow’s core is our living database of more than 100 million U.S. homes, featuring both public and user-generated information including number of bedrooms and bathrooms, tax assessments, home sales and listing data of homes for sale and for rent. This data allows us to calculate, among other indicators, the Zestimate, a highly accurate, automated, estimated value of almost every home in the country as well as the Zillow Home Value Index and Zillow Rent Index, leading measures of median home values and rents. # Content The Zillow Rent Index is the median estimated monthly rental price for a given area, and covers multifamily, single family, condominium, and cooperative homes in Zillow’s database, regardless of whether they are currently listed for rent. It is expressed in dollars and is seasonally adjusted. The Zillow Rent Index is published at the national, state, metro, county, city, neighborhood, and zip code levels. Zillow produces rent estimates (Rent Zestimates) based on proprietary statistical and machine learning models. Within each county or state, the models observe recent rental listings and learn the relative contribution of various home attributes in predicting prevailing rents. These home attributes include physical facts about the home, prior sale transactions, tax assessment information and geographic location as well as the estimated market value of the home (Zestimate). Based on the patterns learned, these models estimate rental prices on all homes, including those not presently for rent. Because of the availability of Zillow rental listing data used to train the models, Rent Zestimates are only available back to November 2010; therefore, each ZRI time series starts on the same date. # Acknowledgements The rent index data was calculated from Zillow's proprietary Rent Zestimates and published on its website. # Inspiration What city has the highest and lowest rental prices in the country? Which metropolitan area is the most expensive to live in? Where have rental prices increased in the past five years and where have they remained the same? What city or state has the lowest cost per square foot?

{'# Context': 'Zillow公司运营着由首席经济学家斯坦·汉弗莱斯博士领导的行业领先的经济分析与研究部门。在Zillow,汉弗莱斯博士及其由经济学家和数据分析师组成的团队生产了涵盖全国超过500个市场的广泛住房数据和分析。Zillow研究部产出多种与房地产、租赁和抵押贷款相关的指标,并就影响住房市场的当前主题和趋势发表独特的分析报告。', '# Content': 'Zillow租赁指数表示特定地区的月度租金中位数,涵盖Zillow数据库中的多户住宅、单户住宅、公寓和合作社住宅,无论它们目前是否已列出用于出租。该指数以美元为单位表示,并进行了季节性调整。Zillow租赁指数在全国、州、大都市、县、市、社区和邮政编码等不同层级进行发布。 Zillow通过专有的统计和机器学习模型生成租赁估算(租赁Zestimate)。在每个县或州内,这些模型观察最近的租赁列表,并学习各种住宅属性在预测现行租金中的相对贡献。这些住宅属性包括关于住宅的物理事实、先前的销售交易、税收评估信息和地理位置,以及住宅的估计市场价值(Zestimate)。基于学习到的模式,这些模型对包括当前未出租的住宅在内的所有住宅估算租金。由于用于训练模型的Zillow租赁列表数据的可用性,租赁估算仅可追溯到2010年11月;因此,每个ZRI时间序列均从同一日期开始。', '# Acknowledgements': '租赁指数数据是根据Zillow的专有租赁估算计算得出的,并在其网站上发布。', '# Inspiration': '哪个城市的租金价格最高和最低?哪个大都市区的居住成本最为昂贵?过去五年中哪些地区的租金价格上涨,哪些地区保持不变?哪个城市或州的每平方英尺成本最低?'}
提供机构:
Kaggle
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。

国家青藏高原科学数据中心 收录

lmarena-ai/arena-hard-auto-v0.1

--- license: apache-2.0 dataset_info: features: - name: question_id dtype: string - name: category dtype: string - name: cluster dtype: string - name: turns list: - name: content dtype: string splits: - name: train num_bytes: 251691 num_examples: 500 download_size: 154022 dataset_size: 251691 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Arena-Hard-Auto **Arena-Hard-Auto-v0.1** ([See Paper](https://arxiv.org/abs/2406.11939)) is an automatic evaluation tool for instruction-tuned LLMs. It contains 500 challenging user queries sourced from Chatbot Arena. We prompt GPT-4-Turbo as judge to compare the models' responses against a baseline model (default: GPT-4-0314). Notably, Arena-Hard-Auto has the highest *correlation* and *separability* to Chatbot Arena among popular open-ended LLM benchmarks ([See Paper](https://arxiv.org/abs/2406.11939)). If you are curious to see how well your model might perform on Chatbot Arena, we recommend trying Arena-Hard-Auto. Please checkout our GitHub repo on how to evaluate models using Arena-Hard-Auto and more information about the benchmark. If you find this dataset useful, feel free to cite us! ``` @article{li2024crowdsourced, title={From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline}, author={Li, Tianle and Chiang, Wei-Lin and Frick, Evan and Dunlap, Lisa and Wu, Tianhao and Zhu, Banghua and Gonzalez, Joseph E and Stoica, Ion}, journal={arXiv preprint arXiv:2406.11939}, year={2024} } ```

hugging_face 收录

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

MMAUD

MMAUD是一个综合的多模态反无人机数据集,用于检测、分类、跟踪和轨迹估计紧凑型商用无人机威胁。数据集包含多种传感器数据,如3D激光雷达、同步相机、毫米波雷达和音频阵列节点。

github 收录

ImageNet-1K(ILSVRC2012)

ImageNet-1K(ILSVRC2012)是一个大规模的图像分类数据集,包含1000个类别的图像,用于训练和验证图像分类模型。

github 收录