five

FEMA National Risk Index|自然灾害风险评估数据集|数据驱动决策数据集

收藏
Snowflake2023-10-26 更新2024-05-01 收录
自然灾害风险评估
数据驱动决策
下载链接:
https://app.snowflake.com/marketplace/listing/GZSTZKU9FH9
下载链接
链接失效反馈
资源简介:
FEMA's National Risk Index (NRI) is a comprehensive dataset designed to assess and quantify risks associated with various natural hazards and socioeconomic factors across the United States. It integrates extensive datasets from federal, state, local, and private sources to provide a holistic understanding of the vulnerabilities and potential impacts of natural disasters. The NRI covers 18 different perils, including hurricanes, floods, earthquakes, wildfires, and more. By combining hazard intensity, exposure data, and vulnerability factors, it calculates risk scores and rankings to inform decision-making, disaster preparedness, and resilience-building efforts at local, regional, and national levels. The NRI plays a pivotal role in enhancing risk management and reducing the impact of disasters on communities and infrastructure. The National Risk Index datasets have been uploaded by Kipi.ai to provide Snowflake customers with easier access to the data. The data is from the latest available update “Dataset Update 1.19.0 - 3/23/2023”. The data will be updated as new updates are released from FEMA. Key Features: Comprehensive Risk Assessment: - Leverage the NRI's extensive coverage of 18 natural hazards and <br/>socioeconomic factors. - Gain a holistic view of potential risks, including hurricanes, floods, earthquakes, <br/>wildfires, and more. Data-Driven Decision Making: - Make informed decisions based on quantified risk scores and rankings. - Enhance disaster preparedness, mitigation strategies, and community <br/>resilience. Risk Score Calculation: - Utilize the NRI's methodology to calculate risk scores by combining hazard, <br/>exposure, and vulnerability factors. - Quantify potential losses and impacts to prioritize resources effectively. Customized Insights: - Tailor NRI data to meet your organization's specific needs. - Generate customized reports and visualizations to communicate risk <br/>assessments effectively. Future Risk Considerations: - Anticipate future risk scenarios with climate change projections and <br/>demographic trends. - Plan for long-term resilience and adaptability. Disclaimer:<br/>The information contained in this website is for general information purposes only. This information is provided by the website: https://hazards.fema.gov/nri/data-resources. This product uses the FEMA National Risk Index data but is not endorsed by Kipi.ai LLC or FEMA. The Federal Government or FEMA or Kipi.ai LLC cannot vouch for the data or analyses derived from these data after the data have been retrieved from the Agency. Kipi.ai LLC and FEMA make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk. The Data accessed here is available with the citation mentioned hereinafter, 1. For the National Risk Index:<br/>Zuzak, C., E. Goodenough, C. Stanton, M. Mowrer, A. Sheehan, B. Roberts, P. McGuire, and J. Rozelle. 2023. National Risk Index Technical Documentation. Federal Emergency Management Agency, Washington, DC. 2. Peer-reviewed journal article providing further details on National Risk Index methodology and results:<br/>Zuzak, C., Mowrer, M., Goodenough, E. et al. The national risk index: establishing a nationwide baseline for natural hazard risk in the US. Nat Hazards 114, 2331–2355 (2022). Available at https://link.springer.com/article/10.1007/s11069-022-05474-w
提供机构:
kipi.ai
创建时间:
2023-09-19
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

新能源光伏功率预测数据

采集数值天气预报数据、实时环境气象数据、光伏电站实时输出功率数据等信息,通过气象预测模型与功率预测算法,实现对光伏电站未来一段时间内气象数据及功率数据的预测。

安徽省数据知识产权登记平台 收录

AlgoPuzzleVQA

We are releasing AlgoPuzzleVQA, a novel and challenging dataset for multimodal reasoning!

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

CliMedBench

CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。

arXiv 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录