five

Sperm whales Gulf of California 2007-2008-accessory|海洋生物学数据集|行为生态学数据集

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
海洋生物学
行为生态学
下载链接:
https://www.datarepository.movebank.org/handle/10255/move.942
下载链接
链接失效反馈
资源简介:
Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1‐Hz resolution and GPS‐quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS‐quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V‐shaped, Mid‐water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short‐ and Long‐duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

BDD100K

数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。

OpenDataLab 收录

Photovoltaic power plant data

包括经纬度、电源板模型、NWP等信息。

github 收录