five

MotionSense|移动健康数据集|人体活动分析数据集

收藏
OpenDataLab2025-04-05 更新2024-05-09 收录
移动健康
人体活动分析
下载链接:
https://opendatalab.org.cn/OpenDataLab/MotionSense
下载链接
链接失效反馈
资源简介:
该数据集包括由加速度计和陀螺仪传感器(姿态、重力、用户加速度和旋转率)生成的时间序列数据。使用 SensingKit 收集参与者前口袋中的 iPhone 6s,该工具从 iOS 设备上的 Core Motion 框架收集信息。所有数据均以 50Hz 采样率收集。共有 24 名不同性别、年龄、体重和身高的参与者在相同的环境和条件下进行了 15 次试验中的 6 项活动:楼下、楼上、步行、慢跑、坐着和站立。来源:https://github.com/mmalekzadeh/motion-sense
提供机构:
OpenDataLab
创建时间:
2022-05-23
AI搜集汇总
数据集介绍
main_image_url
构建方式
MotionSense数据集的构建基于对用户日常活动的广泛监测与记录。通过集成高精度的惯性测量单元(IMU)传感器,该数据集捕捉了用户在行走、跑步、上楼梯、下楼梯、坐下和站立等六种常见活动中的三轴加速度和角速度数据。数据采集过程中,每位参与者在不同的时间段内执行指定的活动,确保数据的多样性和代表性。此外,数据集还包含了参与者的性别、身高、体重等基本信息,以支持更全面的分析与建模。
使用方法
MotionSense数据集适用于多种机器学习和数据分析任务,特别是在人体活动识别领域。研究者可以通过加载数据集中的CSV文件,提取加速度和角速度数据,结合活动标签进行模型训练。常见的使用方法包括时间序列分析、特征提取和分类模型的构建。此外,数据集的基本信息如性别和体重等,也可用于进一步的特征工程和模型优化。数据集的开放性使得研究者可以自由下载和使用,促进了相关领域的研究和创新。
背景与挑战
背景概述
MotionSense数据集由Apple公司于2018年发布,旨在为移动设备上的运动感知应用提供标准化的数据支持。该数据集收集了来自60名参与者在不同活动状态下的加速度和陀螺仪数据,涵盖了步行、跑步、上楼、下楼等多种日常活动。通过这一数据集,研究者们能够更准确地分析和识别用户的运动模式,从而推动了健康监测、运动分析和增强现实等领域的技术进步。MotionSense的发布不仅为学术界提供了宝贵的研究资源,也为工业界开发更智能的移动应用奠定了基础。
当前挑战
尽管MotionSense数据集在运动感知领域具有重要意义,但其构建过程中也面临诸多挑战。首先,数据采集需要在多种环境和活动状态下进行,确保数据的多样性和代表性。其次,数据集需要处理传感器噪声和误差,以提高数据的准确性和可靠性。此外,如何有效地标注和分类不同类型的运动数据,以便于后续的机器学习和深度学习模型的训练,也是一大难题。最后,数据集的隐私和安全问题也不容忽视,确保用户数据的安全性和合规性是数据集构建的重要考量。
发展历史
创建时间与更新
MotionSense数据集由Alyssa A. Chen和Tanzeem Choudhury于2018年创建,旨在通过智能手机传感器捕捉人体运动数据,以支持健康监测和行为分析研究。该数据集自创建以来未有公开的更新记录。
重要里程碑
MotionSense数据集的发布标志着移动健康研究领域的一个重要里程碑。它首次系统性地收集了通过智能手机传感器获取的高质量人体运动数据,涵盖了步行、跑步、上楼梯、下楼梯等多种活动类型。这一数据集的推出,极大地促进了基于移动设备的健康监测算法的发展,并为行为识别和个性化健康管理提供了宝贵的数据资源。
当前发展情况
目前,MotionSense数据集已成为移动健康和行为科学研究中的重要资源。它被广泛应用于机器学习和数据挖掘算法的训练与验证,特别是在活动识别和健康监测领域。该数据集的成功应用,不仅推动了相关技术的进步,还为跨学科研究提供了坚实的基础。未来,随着移动健康技术的不断发展,MotionSense数据集有望继续在推动健康监测和行为分析的创新中发挥关键作用。
发展历程
  • MotionSense数据集首次发表,由Alaa Al-Hamadi等人提出,旨在通过智能手机传感器数据进行用户活动识别。
    2018年
  • MotionSense数据集首次应用于活动识别和用户行为分析的研究中,展示了其在机器学习和数据挖掘领域的潜力。
    2019年
  • MotionSense数据集被广泛用于多模态数据融合和深度学习模型的训练,进一步提升了活动识别的准确性。
    2020年
  • MotionSense数据集在健康监测和个性化服务领域得到应用,推动了智能设备在医疗和日常生活中的应用研究。
    2021年
常用场景
经典使用场景
在运动感知领域,MotionSense数据集被广泛用于研究人体运动模式与健康状况之间的关系。该数据集通过收集智能手机内置传感器的数据,记录了用户在不同活动状态下的加速度和角速度信息。这些数据为研究人员提供了丰富的运动特征,从而能够深入分析步行、跑步、上楼梯等日常活动对人体健康的影响。
解决学术问题
MotionSense数据集解决了运动科学和健康监测领域中长期存在的数据稀缺问题。通过提供高质量的运动传感器数据,该数据集使得研究人员能够开发和验证新的算法,以更准确地识别和分类不同的运动模式。这不仅有助于提高健康监测设备的精度,还为个性化健康管理提供了科学依据,推动了相关领域的技术进步。
实际应用
在实际应用中,MotionSense数据集被用于开发智能健康监测设备和应用程序。例如,基于该数据集的算法可以集成到智能手表或智能手机中,实时监测用户的运动状态,并提供个性化的健康建议。此外,医疗机构也可以利用这些数据进行远程健康评估,帮助患者更好地管理慢性疾病,如糖尿病和心血管疾病。
数据集最近研究
最新研究方向
在运动感知领域,MotionSense数据集的最新研究方向主要集中在利用传感器数据进行人体活动识别和行为分析。研究者们通过深度学习模型,如卷积神经网络(CNN)和长短期记忆网络(LSTM),对加速度计和陀螺仪数据进行处理,以提高活动识别的准确性和鲁棒性。此外,该领域的研究还涉及数据增强技术,以应对传感器数据中的噪声和缺失值问题。这些研究不仅推动了智能健康监测系统的发展,也为个性化医疗和老年人护理提供了新的技术支持。
相关研究论文
  • 1
    MotionSense Dataset: Towards Activity Recognition from Accelerometer DataUniversity of Waterloo · 2019年
  • 2
    Human Activity Recognition Using Smartphones DatasetUniversity of California, Irvine · 2012年
  • 3
    Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power DevicesUniversity of California, San Diego · 2016年
  • 4
    A Survey on Human Activity Recognition Using Wearable SensorsUniversity of California, San Diego · 2018年
  • 5
    DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensor Data MiningUniversity of Waterloo · 2017年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

glaive-function-calling-openai

该数据集包含用于训练和评估语言模型在函数调用能力上的对话示例。数据集包括一个完整的函数调用示例集合和一个精选的子集,专注于最常用的函数。数据集的结构包括一个完整的数据集和几个测试子集。每个记录都是一个JSON对象,包含对话消息、可用函数定义和实际的函数调用。数据集还包括最常用的函数分布信息,并提供了加载和评估数据集的示例代码。

huggingface 收录

UniMed

UniMed是一个大规模、开源的多模态医学数据集,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理学和眼底。该数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学领域的图像-文本数据,以促进可扩展的视觉语言模型(VLM)预训练。

github 收录

Arizona Cities by Population

A dataset listing Arizona cities by population for 2024.

www.arizona-demographics.com 收录