five

FDDB|面部检测数据集|图像标注数据集

收藏
github2024-05-20 更新2024-05-31 收录
面部检测
图像标注
下载链接:
https://github.com/jian667/face-dataset
下载链接
链接失效反馈
资源简介:
用于面部检测的数据集,包含多个面部图像及其标注。

A dataset for facial detection, comprising multiple facial images along with their annotations.
创建时间:
2018-05-14
原始信息汇总

面部检测数据集

FDDB

Wider Face

MAFA

4k face dataset

Unconstrained Face Detection Dataset (UFDD)

wildest faces

Multi-Attribute Labelled Faces (MALF)

IJB-A Dataset

面部识别数据集

Racial Faces in-the-Wild: RFW

年龄估计数据集

IMDB-WIKI

CACD (Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval)

Adience dataset

  • 统计信息:
    • 总图像数: 26,580
    • 总受试者数: 2,284
    • 年龄组数: 8
    • 性别标签: 有
    • 野外条件: 是
    • 受试者标签: 有
  • 数据集: Adience dataset

UTK-Face

APPA-REAL (real and apparent age)

面部地标检测数据集

300W

COFW

  • 特点: 不同程度的遮挡
  • 论文: COFW论文

AFLW

WFLW

面部变形模型

Basel Face Model

Large Scale Facial Model (LSFM)

面部取证

FaceForensics++

Celeb-DF

The Deepfake Detection Challenge (DFDC) Preview Dataset

WildDeepfake

DeeperForensics-1.0

面部反欺骗

CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations

亲属验证

TALking KINship (TALKIN)

Families In the Wild: A Kinship Recognition Benchmark (FIW)

3D

UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition

AI搜集汇总
数据集介绍
main_image_url
构建方式
FDDB数据集的构建基于对大量无约束人脸图像的收集与标注。该数据集从多个公开的图像源中选取了5171张图像,并对其中的28453个人脸进行了精确的标注。这些图像涵盖了各种光照条件、姿态变化以及复杂背景,确保了数据集的多样性和挑战性。通过这种方式,FDDB为研究者提供了一个全面且高质量的基准,用于评估和比较不同人脸检测算法的性能。
特点
FDDB数据集的显著特点在于其广泛的应用场景和多样化的图像内容。该数据集包含了从简单到复杂的人脸检测挑战,如部分遮挡、极端光照和不同姿态的人脸。此外,FDDB的标注精度高,确保了数据集在评估人脸检测算法时的可靠性。这些特性使得FDDB成为人脸检测领域中一个重要的基准数据集,广泛用于算法开发和性能评估。
使用方法
FDDB数据集主要用于评估和比较不同人脸检测算法的性能。研究者可以通过下载数据集并使用其提供的标注文件,对自研算法进行测试和验证。通常,使用FDDB的步骤包括加载图像和标注数据、运行检测算法、计算检测结果与真实标注的匹配度,并最终生成性能报告。此外,FDDB还提供了官方的评估工具,帮助研究者更方便地进行算法评估和结果比较。
背景与挑战
背景概述
FDDB(Face Detection Data Set and Benchmark)是由美国马萨诸塞大学阿默斯特分校的研究团队创建的一个著名人脸检测数据集。该数据集首次发布于2010年,旨在为人脸检测算法提供一个标准化的评估平台。FDDB的核心研究问题是如何在复杂背景下准确检测和定位人脸,尤其是在不受约束的环境中。该数据集包含了2845张图像,涵盖了5171个人脸标注,具有广泛的视角、光照和遮挡变化。FDDB的发布极大地推动了人脸检测技术的发展,成为该领域的重要基准之一。
当前挑战
FDDB数据集在构建和应用过程中面临多重挑战。首先,数据集中的人脸具有多样化的姿态、光照和遮挡情况,这增加了检测算法的复杂性。其次,数据集的标注需要高精度的手动操作,以确保每个标注的准确性和一致性,这在实际操作中极具挑战性。此外,随着深度学习技术的快速发展,如何利用FDDB数据集来评估和提升新型算法的性能,仍然是一个持续的研究课题。最后,数据集的规模和多样性虽然已经较为全面,但如何进一步扩展以涵盖更多极端情况,仍是未来研究的一个重要方向。
常用场景
经典使用场景
FDDB数据集在人脸检测领域中具有经典地位,其主要用于评估和比较不同人脸检测算法的性能。该数据集包含了大量无约束环境下的面部图像,涵盖了各种姿态、光照条件和遮挡情况。研究者通过使用FDDB数据集,能够有效测试和验证其算法在复杂场景下的鲁棒性和准确性,为人脸检测技术的进步提供了坚实的基础。
实际应用
在实际应用中,FDDB数据集为人脸识别系统、安防监控、智能视频分析等领域提供了重要的技术支持。例如,在安防监控系统中,FDDB数据集的训练模型能够帮助系统在复杂环境下准确识别和跟踪目标人物,提高系统的可靠性和实用性。此外,FDDB数据集还被广泛应用于智能手机的人脸解锁功能中,提升了用户体验和安全性。
衍生相关工作
基于FDDB数据集,研究者们开发了多种先进的人脸检测算法,并在此基础上衍生出了一系列相关工作。例如,一些研究通过结合深度学习技术,进一步提升了检测的准确性和速度。此外,FDDB数据集还被用于开发多任务学习框架,使得单一模型能够同时处理人脸检测、姿态估计和表情识别等多个任务,极大地推动了人脸分析技术的发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录