five

IMF - World Economic Outlook|宏观经济数据集|全球经济展望数据集

收藏
www.imf.org2024-10-26 收录
宏观经济
全球经济展望
下载链接:
https://www.imf.org/en/Publications/WEO/weo-database
下载链接
链接失效反馈
资源简介:
该数据集包含国际货币基金组织(IMF)发布的全球经济展望报告中的经济数据,涵盖全球各国的经济增长预测、通货膨胀率、失业率、财政政策等宏观经济指标。
提供机构:
www.imf.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
IMF - World Economic Outlook数据集的构建基于国际货币基金组织(IMF)的全球经济展望报告。该数据集通过系统地收集和整理来自全球各国的经济指标,包括国内生产总值(GDP)、通货膨胀率、失业率等关键经济变量,形成了一个全面的经济数据库。数据来源包括各国政府发布的官方统计数据、IMF的内部研究以及国际组织的合作数据。数据集的构建过程严格遵循数据清洗、验证和标准化的流程,确保数据的准确性和一致性。
特点
IMF - World Economic Outlook数据集以其全球覆盖和多维度经济指标著称。该数据集不仅涵盖了发达国家和发展中国家的经济数据,还提供了历史数据和预测数据,为研究者提供了丰富的分析资源。此外,数据集的更新频率较高,通常每季度更新一次,确保了数据的时效性。数据集还提供了多种数据格式和可视化工具,便于用户进行深入分析和研究。
使用方法
IMF - World Economic Outlook数据集适用于多种经济分析和研究场景。研究者可以利用该数据集进行跨国比较分析、经济趋势预测以及政策效果评估。数据集提供了API接口和数据下载服务,用户可以根据需要选择合适的数据格式进行下载和处理。此外,IMF还提供了在线数据查询和可视化工具,用户可以通过这些工具直观地查看和分析数据。数据集的使用需要遵循IMF的数据使用条款,确保合法合规。
背景与挑战
背景概述
国际货币基金组织(IMF)的世界经济展望(World Economic Outlook, WEO)数据集自1990年代初以来,已成为全球经济研究的重要资源。该数据集由IMF的经济学家和研究人员精心编制,涵盖了全球主要经济体的宏观经济指标,如国内生产总值(GDP)、通货膨胀率、失业率等。WEO数据集的发布通常与IMF的年度和半年度报告同步,为政策制定者、学者和投资者提供了关键的经济趋势分析和预测。通过持续更新和扩展,WEO数据集在全球经济研究和政策制定中发挥了不可或缺的作用,成为国际经济合作和决策的重要参考。
当前挑战
尽管WEO数据集在全球经济研究中具有重要地位,但其构建过程中仍面临诸多挑战。首先,数据收集的广泛性和时效性要求极高,涉及多个国家和地区的经济数据,确保数据的准确性和一致性是一大难题。其次,全球经济环境的复杂性和多变性使得经济预测充满不确定性,如何准确捕捉和反映这些变化是WEO数据集面临的另一大挑战。此外,数据集的更新频率和覆盖范围需要不断调整以适应全球经济的新动态,这要求IMF的研究团队具备高度的专业性和前瞻性。
发展历史
创建时间与更新
国际货币基金组织(IMF)的世界经济展望(World Economic Outlook)数据集自1990年代初开始创建,定期每半年更新一次,以反映全球经济状况的最新变化。
重要里程碑
该数据集的重要里程碑包括1997年亚洲金融危机期间,IMF首次大规模发布全球经济展望报告,为国际社会提供了危机应对的重要参考。2008年全球金融危机期间,IMF进一步强化了其数据更新频率和分析深度,成为全球经济政策制定的重要依据。此外,2010年后,IMF开始引入更多新兴市场国家的经济数据,使得数据集的覆盖范围更加广泛和全面。
当前发展情况
当前,IMF的世界经济展望数据集已成为全球经济研究与政策制定的重要工具。它不仅提供了详尽的宏观经济数据,还通过定期的经济预测和分析,帮助各国政府和国际组织制定应对经济波动的策略。近年来,IMF还加强了与大数据和人工智能技术的结合,提升了数据分析的精度和前瞻性,进一步巩固了其在国际经济研究领域的领导地位。
发展历程
  • 国际货币基金组织(IMF)首次发布《世界经济展望》(World Economic Outlook)报告,标志着该数据集的诞生。
    1990年
  • IMF开始定期每半年发布一次《世界经济展望》报告,逐步确立了其作为全球经济预测和分析的重要工具。
    1995年
  • 《世界经济展望》报告开始涵盖更多新兴市场和发展中国家的经济数据,扩大了数据集的覆盖范围。
    2000年
  • 在全球金融危机期间,IMF通过《世界经济展望》报告提供了关键的经济分析和政策建议,增强了其在全球经济治理中的影响力。
    2008年
  • IMF在《世界经济展望》报告中首次引入对全球经济不平等问题的深入分析,反映了数据集在社会经济议题上的扩展。
    2015年
  • 面对新冠疫情,IMF通过《世界经济展望》报告迅速调整了对全球经济的预测,并提供了应对疫情冲击的政策建议。
    2020年
常用场景
经典使用场景
在国际经济研究领域,IMF - World Economic Outlook数据集被广泛用于分析全球经济趋势和预测未来经济走势。该数据集提供了各国宏观经济指标的详细数据,包括国内生产总值(GDP)、通货膨胀率、失业率等,为经济学家和政策制定者提供了宝贵的参考信息。通过这些数据,研究者可以深入探讨全球经济一体化进程中的各种复杂现象,如贸易不平衡、汇率波动和经济增长差异。
衍生相关工作
IMF - World Economic Outlook数据集的发布和使用催生了大量相关的经典研究工作。例如,许多学者基于该数据集进行了跨国经济增长比较研究,探讨了不同经济体在经济增长路径上的差异及其原因。此外,该数据集还为全球经济周期同步性研究提供了数据支持,揭示了全球经济波动中的同步和异步现象。这些研究不仅丰富了国际经济学的理论体系,也为全球经济治理提供了重要的理论和实证基础。
数据集最近研究
最新研究方向
在国际经济与金融领域,IMF - World Economic Outlook数据集的最新研究方向聚焦于全球经济动态的实时监测与预测。研究者们利用该数据集,结合机器学习与大数据分析技术,深入探讨全球经济增长的驱动因素及其潜在风险。特别是在新冠疫情背景下,该数据集为全球经济复苏路径的预测提供了重要依据,推动了政策制定者对宏观经济调控策略的优化。此外,该数据集还促进了国际经济合作与政策协调的研究,为全球经济治理体系的完善提供了科学支持。
相关研究论文
  • 1
    World Economic Outlook: A Survey by the Staff of the International Monetary FundInternational Monetary Fund · 2023年
  • 2
    The Global Economic Impact of COVID-19: Insights from the IMF's World Economic OutlookInternational Monetary Fund · 2021年
  • 3
    Global Economic Prospects and Policy Challenges: A Review of the IMF's World Economic OutlookInternational Monetary Fund · 2022年
  • 4
    The Role of Fiscal Policy in Addressing Global Economic Challenges: Evidence from the IMF's World Economic OutlookInternational Monetary Fund · 2020年
  • 5
    Global Economic Integration and Its Discontents: Lessons from the IMF's World Economic OutlookInternational Monetary Fund · 2019年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CosyVoice 2

CosyVoice 2是由阿里巴巴集团开发的多语言语音合成数据集,旨在通过大规模多语言数据集训练,实现高质量的流式语音合成。数据集通过有限标量量化技术改进语音令牌的利用率,并结合预训练的大型语言模型作为骨干,支持流式和非流式合成。数据集的创建过程包括文本令牌化、监督语义语音令牌化、统一文本-语音语言模型和块感知流匹配模型等步骤。该数据集主要应用于语音合成领域,旨在解决高延迟和低自然度的问题,提供接近人类水平的语音合成质量。

arXiv 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录