five

India Registered Motor Vehicles: City: Coimbatore: Non Transport: Two Wheelers: Scooters|机动车注册数据集|踏板车市场数据集

收藏
www.ceicdata.com2025-03-22 收录
机动车注册
踏板车市场
下载链接:
https://www.ceicdata.com/en/india/number-of-registered-motor-vehicles-city-coimbatore/registered-motor-vehicles-city-coimbatore-non-transport-two-wheelers-scooters
下载链接
链接失效反馈
资源简介:
Registered Motor Vehicles: City: Coimbatore: Non Transport: Two Wheelers: Scooters data was reported at 429.301 Unit th in 2020. This records an increase from the previous number of 413.436 Unit th for 2019. Registered Motor Vehicles: City: Coimbatore: Non Transport: Two Wheelers: Scooters data is updated yearly, averaging 188.319 Unit th from Mar 2002 (Median) to 2020, with 18 observations. The data reached an all-time high of 429.301 Unit th in 2020 and a record low of 76.606 Unit th in 2002. Registered Motor Vehicles: City: Coimbatore: Non Transport: Two Wheelers: Scooters data remains active status in CEIC and is reported by Ministry of Road Transport and Highways. The data is categorized under India Premium Database’s Automobile Sector – Table IN.RAE006: Number of Registered Motor Vehicles: City: Coimbatore.

登记的机动车:城市:科伊姆巴托尔:非运输:两轮车:踏板车数据于2020年报告为429.301单位。该数据较2019年的413.436单位有所上升。登记的机动车:城市:科伊姆巴托尔:非运输:两轮车:踏板车数据每年更新一次,从2002年3月(中位数)至2020年,平均值为188.319单位,共包含18个观测值。该数据在2020年达到了历史最高值429.301单位,而在2002年达到了历史最低值76.606单位。登记的机动车:城市:科伊姆巴托尔:非运输:两轮车:踏板车数据在CEIC中保持活跃状态,并由道路运输和高速公路部进行报告。该数据归类于印度高端数据库的汽车行业——表格IN.RAE006:登记机动车数量:城市:科伊姆巴托尔。
提供机构:
CEICdata.com
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

yahoo-finance-data

该数据集包含从Yahoo! Finance、Nasdaq和U.S. Department of the Treasury获取的财务数据,旨在用于研究和教育目的。数据集包括公司详细信息、高管信息、财务指标、历史盈利、股票价格、股息事件、股票拆分、汇率和每日国债收益率等。每个数据集都有其来源、简要描述以及列出的列及其数据类型和描述。数据定期更新,并以Parquet格式提供,可通过DuckDB进行查询。

huggingface 收录

UCM-Captions, Sydney-Captions, RSICD, RSITMD, NWPU-Captions, RS5M, SkyScript

UCM-Captions: 包含613张图像,分辨率为256×256。Sydney-Captions: 包含2,100张图像,分辨率为500×500。RSICD: 包含10,921张图像,分辨率为224×224。RSITMD: 包含4,743张图像,分辨率为256×256。NWPU-Captions: 包含31,500张图像,分辨率为256×256。RS5M: 包含超过500万张图像,分辨率为所有可能的分辨率。SkyScript: 包含520万张图像,分辨率为所有可能的分辨率。

github 收录

UniMed

UniMed是一个大规模、开源的多模态医学数据集,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理学和眼底。该数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学领域的图像-文本数据,以促进可扩展的视觉语言模型(VLM)预训练。

github 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录