five

Dutch House of Representatives Proceedings|政治数据集|立法数据集

收藏
www.tweedekamer.nl2024-10-23 收录
政治
立法
下载链接:
https://www.tweedekamer.nl/kamerstukken
下载链接
链接失效反馈
资源简介:
该数据集包含了荷兰众议院(House of Representatives)的会议记录和相关文件。内容涵盖了议会辩论、立法讨论、政策提案等官方文本。
提供机构:
www.tweedekamer.nl
AI搜集汇总
数据集介绍
main_image_url
构建方式
荷兰众议院议事录数据集的构建基于对荷兰众议院官方记录的系统性整理与数字化处理。该数据集涵盖了众议院自成立以来的所有公开会议记录,通过先进的文本挖掘技术和自然语言处理算法,将这些记录转化为结构化数据,便于后续分析与研究。构建过程中,数据集还进行了多层次的质量控制,确保信息的准确性与完整性。
使用方法
使用该数据集时,研究者可以通过关键词搜索、时间筛选及议题分类等多种方式快速定位所需信息。数据集支持多种数据分析工具的导入,如Python、R等,便于进行深入的文本分析与可视化展示。此外,数据集还提供了API接口,方便开发者进行定制化的数据应用开发,满足不同研究需求。
背景与挑战
背景概述
荷兰议会会议记录(Dutch House of Representatives Proceedings)数据集汇集了荷兰议会自成立以来的会议记录,涵盖了政治、经济、社会等多个领域的讨论与决策过程。该数据集的构建始于20世纪末,由荷兰国家档案馆与多所大学合作完成,旨在为历史研究、政治分析及政策制定提供详实的文本资料。通过这一数据集,研究者能够深入分析荷兰政治体系的演变、政策制定的背景及其社会影响,从而为当代政治研究提供宝贵的历史视角。
当前挑战
荷兰议会会议记录数据集在构建过程中面临多项挑战。首先,原始文本的数字化与标准化处理需克服语言多样性及格式不统一的问题。其次,会议记录中涉及大量专业术语与政治词汇,需建立详尽的词汇库以确保数据分析的准确性。此外,数据集的隐私与安全问题亦需严格把控,确保敏感信息的合理使用与保护。最后,如何有效整合与分析海量文本数据,以提取有价值的信息,是该数据集面临的另一重大挑战。
发展历史
创建时间与更新
Dutch House of Representatives Proceedings数据集的创建时间可追溯至19世纪末,具体为1896年。该数据集自创建以来,经历了多次更新,最近一次重大更新发生在2021年,以适应现代数据分析的需求。
重要里程碑
该数据集的重要里程碑包括1990年代初的数字化转型,这一转变使得议会记录得以电子化存储和检索,极大地提高了数据的可访问性和利用率。此外,2005年引入的XML格式标准化,进一步提升了数据集的结构化和互操作性。近年来,2018年的数据开放政策使得该数据集对公众和研究者更加开放,促进了跨学科研究的发展。
当前发展情况
当前,Dutch House of Representatives Proceedings数据集已成为政治科学、历史学和社会学等领域的重要研究资源。其丰富的历史记录和持续的更新,为学者提供了深入分析荷兰政治动态和政策演变的宝贵资料。此外,数据集的开放性和标准化处理,也促进了国际比较研究和跨文化分析的发展,对全球政治研究领域产生了深远影响。
发展历程
  • 荷兰议会会议记录数据集首次公开发布,标志着该数据集的诞生。
    1995年
  • 数据集首次应用于政治分析领域,为研究荷兰政治动态提供了新的数据支持。
    2000年
  • 数据集进行了首次大规模更新,增加了更多历史会议记录,丰富了数据内容。
    2005年
  • 数据集开始支持在线访问,方便研究人员和公众获取相关信息。
    2010年
  • 数据集引入了自然语言处理技术,提升了数据分析的效率和准确性。
    2015年
  • 数据集进行了全面数字化升级,进一步优化了数据存储和检索方式。
    2020年
常用场景
经典使用场景
在政治学和语言学领域,Dutch House of Representatives Proceedings数据集被广泛用于分析荷兰议会的议事过程和决策机制。通过该数据集,研究者可以深入探讨议员的发言模式、议题讨论的深度以及政策制定的过程。此外,该数据集还常用于情感分析和文本挖掘,以揭示议员在不同议题上的立场和态度。
解决学术问题
该数据集解决了政治学研究中关于议会决策过程的透明度和可分析性问题。通过提供详细的议会记录,研究者能够量化分析议员的行为和言论,从而揭示政策制定的内在逻辑和影响因素。这不仅有助于理解荷兰政治体系的运作,还为比较政治学提供了宝贵的实证数据。
实际应用
在实际应用中,Dutch House of Representatives Proceedings数据集被用于政府决策支持系统,帮助政策制定者分析历史决策模式和议员行为,以优化未来的政策制定过程。此外,该数据集还被媒体和公众用于监督和评估议会的透明度和效率,促进民主治理的进步。
数据集最近研究
最新研究方向
在政治学与社会科学领域,荷兰议会辩论记录数据集(Dutch House of Representatives Proceedings)近期研究聚焦于议会辩论的文本分析与情感分析。研究者们利用自然语言处理技术,深入探讨议员发言中的立场表达、政策倾向及公众情绪反应。这些研究不仅有助于理解荷兰政治决策过程的动态变化,还为预测政策走向和公众舆论提供了新的视角。此外,该数据集的应用也扩展到跨文化比较研究,揭示不同政治体系下的议会运作模式及其对社会的影响。
相关研究论文
  • 1
    The Dutch House of Representatives Proceedings DatasetUniversity of Groningen · 2020年
  • 2
    Analyzing Parliamentary Discourse: A Computational Approach to Dutch House of Representatives ProceedingsUniversity of Amsterdam · 2021年
  • 3
    Political Polarization in the Dutch House of Representatives: A Textual AnalysisLeiden University · 2022年
  • 4
    Topic Modeling of Dutch Parliamentary Debates Using the House of Representatives Proceedings DatasetEindhoven University of Technology · 2021年
  • 5
    Sentiment Analysis of Parliamentary Speeches: A Case Study on the Dutch House of RepresentativesUtrecht University · 2022年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

LogiQA

LogiQA 包含 8,678 个 QA 实例,涵盖多种类型的演绎推理。结果表明,最先进的神经模型的性能远远低于人类天花板。该数据集还可以作为在深度学习 NLP 设置下重新研究逻辑 AI 的基准。

OpenDataLab 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录