five

NTU Dataset|行人意图预测数据集|计算机视觉数据集

收藏
DataCite Commons2020-08-27 更新2024-07-27 收录
行人意图预测
计算机视觉
下载链接:
https://figshare.com/articles/NTU_Dataset/7890764/1
下载链接
链接失效反馈
资源简介:
**************** NTU Dataset ReadMe file *******************<br>Attached files contain our data collected inside Nanyang Technological University Campus for pedestrian intention prediction. The dataset is particularly designed to capture spontaneous vehicle influences on pedestrian crossing/not-crossing intention. <br>We utilize this dataset in our paper "Context Model for Pedestrian Intention Prediction using Factored Latent-Dynamic Conditional Random Fields" submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence.<br>The dataset consists of 35 crossing and 35 stopping* (not-crossing) scenarios. The image sequences are in 'Image_sequences' folder. <br>'stopping_instants.csv' and 'crossing_instants.csv' files provides the stopping and crossing instants respectively, utilized for labeling the data and providing ground-truth for evaluation. Camera1 and Camera2 images are synchronized. Two cameras were used to capture the whole scene of interest.<br>We provide pedestrian and vehicle bounding boxes obtained from [1]. The occlusions and mis-detections are linearly interpolated. All necessary detections are stored in 'Object_detector_pedestrians_vehicles' folder. Each column within the csv files ('car_bndbox_..') corresponds to a unique tracked car within each image sequence. Each of the pedestrian csv files ('ped_bndbox_..') contains only one column, as we consider each pedestrian in the scene separately. <br>Additional details:* [xmin xmax ymin ymax] = [left right top down] (for the bounding boxes)* Dataset frequency: 15 fps.* Camera parameters (in pixels): f = 1135, principal point = (960, 540).<br><br>Additionally, we provide semantic segmentation output [2] and our depth parameters. As the data were collected in two phases, there are two files in each folder, highlighting the sequences in each phase.<br>Crossing sequences 1-28 and stopping sequences 1-24 were collected in Phase 1, while crossing sequences 29-35 and stopping sequences 25-35 were collected in Phase 2.<br>We obtained the optical flow from [3]. Our model (FLDCRF and LSTM) codes are available in 'Models' folder.<br><br>If you use our dataset in your research, please cite our paper:<br>"S. Neogi, M. Hoy, W. Chaoqun, J. Dauwels, 'Context Based Pedestrian Intention Prediction Using Factored Latent Dynamic Conditional Random Fields', IEEE SSCI-2017."<br><br>Please email us if you have any questions:<br>1. Satyajit Neogi, PhD Student, Nanyang Technological University @ satyajit001@e.ntu.edu.sg 2. Justin Dauwels, Associate Professor, Nanyang Technological University @ jdauwels@ntu.edu.sg<br><br>Our other group members include:<br>3. Dr. Michael Hoy, @ mch.hoy@gmail.com4. Dr. Kang Dang, @ kangdang@gmail.com5. Ms. Lakshmi Prasanna Kachireddy, 6. Mr. Mok Bo Chuan Lance,7. Dr. Hang Yu, @ fhlyhv@gmail.com<br><br>References:<br>1. S. Ren, K. He, R. Girshick, J. Sun, ``Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015.2. A. Kendall, V. Badrinarayanan, R. Cipolla, ``Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding", BMVC 2017.3. C. Liu. ``Beyond Pixels: Exploring New Representations and Applications for Motion Analysis". Doctoral Thesis. Massachusetts Institute of Technology. May 2009.<br><br><br>* Please note, we had to remove sequence Stopping-33 for privacy reasons.
提供机构:
figshare
创建时间:
2019-03-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

全国景区数据

  中华人民共和国旅游景区质量等级共分为五级,从高到低依次为AAAAA、AAAA、AAA、AA、A级五级。5A级景区代表着中国的世界级精品旅游风景区等级。  CnOpenData汇总整理了全国31个省份及直辖市的景区信息,涵盖了景区名称、省份、景区级别、地址、经纬度、简介等字段,为相关研究助力!

CnOpenData 收录

NASA Exoplanet Archive

Exoplanets specifies Confirmed Planets.

kaggle 收录