VisUnpack 数据集|恶意软件检测数据集|机器学习数据集
收藏
- 1Unveiling Malware Patterns: A Self-analysis Perspective蒙大拿州立大学吉安福尔特计算学院, 乔治亚州立大学计算机科学系, 中密苏里大学计算机科学与网络安全系, 山东大学计算机科学与技术学院 · 2025年
Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
中国区域地面气象要素驱动数据集 v2.0(1951-2020)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。
国家青藏高原科学数据中心 收录
ChinaTravel
ChinaTravel是由南京大学国家重点实验室开发的一个真实世界基准数据集,专门用于评估语言代理在中国旅行规划中的应用。该数据集涵盖了中国10个最受欢迎城市的旅行信息,包括720个航班和5770趟列车,以及3413个景点、4655家餐厅和4124家酒店的详细信息。数据集通过问卷调查收集用户需求,并设计了一个可扩展的领域特定语言来支持自动评估。ChinaTravel旨在解决复杂的真实世界旅行规划问题,特别是在多兴趣点行程安排和用户偏好满足方面,为语言代理在旅行规划中的应用提供了重要的测试平台。
arXiv 收录
Obstacle-dataset OD
该数据集用于十五种障碍物检测,包含VOC格式和YOLO训练的.txt文件,数据集中的图像来自VOC数据集、COCO数据集、TT100K数据集以及作者团队实地收集的图片。
github 收录
CMNEE(Chinese Military News Event Extraction dataset)
CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。
github 收录