HotpotQA|问答系统数据集|自然语言处理数据集
收藏
- HotpotQA首次发表于2018年,由Zhilin Yang等人提出,旨在提供一个多跳问答数据集,以测试机器理解复杂问题的能力。
- HotpotQA在自然语言处理领域得到广泛应用,成为评估问答系统性能的重要基准之一。
- 研究者们开始利用HotpotQA数据集进行多跳推理模型的改进,推动了问答系统在复杂问题处理上的进步。
- HotpotQA数据集的影响力进一步扩大,被纳入多个国际会议和竞赛中,促进了相关技术的交流与发展。
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
FER2013
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。
github 收录
THUCNews
THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。本次比赛数据集在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。提供训练数据共832471条。
github 收录
FAOSTAT Agricultural Data
FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。
www.fao.org 收录
TCIA
TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。
www.cancerimagingarchive.net 收录