five

Counterintuitive scaling between population abundance and local density: implications for modelling transmission of infectious diseases in bat populations|蝙蝠种群数据集|传染病传播模型数据集

收藏
Mendeley Data2024-04-13 更新2024-06-27 收录
蝙蝠种群
传染病传播模型
下载链接:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.9kd51c5jd
下载链接
链接失效反馈
资源简介:
Raw data are available from the Dryad Dataset (https://doi.org/10.5061/dryad.g4f4qrfqv). The data provided here are the processed density and abundance values (response/dependent variables), and roost features (predictor/independent variables) calculated from raw data, used in the manuscript 'Counterintuitive scaling between population abundance and local density: implications for modelling transmission of infectious diseases in bat populations' The file provided (merged.data.csv) contains all levels of data (roost-level, subplot-level, tree-level). Rows are individual trees (tree.accession) measured per site*month (site.accession). Individual trees per site*month are replicated for each species roosting in the tree (species - BFF = black flying-fox, GHFF = grey-headed flying-fox, LRFF = little red flying-fox, all=all species combined). Data from higher nested levels (e.g. roost-level) are replicated for each lower nested level (e.g. tree-level). Data are: - site.code - the roost (DAVO=Avondale, DBUR=Burleigh, DCAN=Canungra, DCLU=Clunes, DLIS=Lismore, DRED=Redcliffe, DSUN=Sunnybank, DTOW=Toowoomba) - session - session number (1=August 2018, 2=September 2018, 3=October 2018, and so on) - site.accession - the unique roost*session ID number (DAVO=Avondale, DBUR=Burleigh, DCAN=Canungra, DCLU=Clunes, DLIS=Lismore, DRED=Redcliffe, DSUN=Sunnybank, DTOW=Toowoomba) - subplot - the subplot number (1-10) - rep - unique site.accession*subplot ID number - species - BFF=black flying-fox, GHFF=grey-headed flying-fox, LRFF=little red flying-fox - Plot.Abundance - total subplot abundance estimated from index abundance values (recorded for all trees) [subplot-level predictor/independent variable] - density - subplot density estimated from total subplot abundance (above) divided by subplot area [“subplot-level density”] - Plot.Available.Trees - the number of midstory, canopy and overstory trees per subplot - Plot.Prop.Trees.Occupied - the proportion of trees occupied per subplot [subplot-level predictor/independent variable] - Plot.Kernel.Density - the kernel density estimate of bats per subplot [“subplot-level kernel density”]. Estimated with zero kernel values (i.e. blank space) removed - Ntrees - total number of tagged trees in subplot - a.can - number of tagged trees within subplot with tallest height above the canopy - b.can - number of tagged trees within subplot with tallest height below the canopy - can - number of tagged trees within subplot with tallest height at the canopy - E-OG - tally of crown classes within subplot, of tagged trees (D=dominant, C=co-dominant, I=intermediate, CI=co-dominant but below canopy, S=suppressed, E=emergent, OG=open) - roost.type - urban (if within the limits of a major urban area) or rural (if outside the limits of a major urban area) - see map figure in manuscript - core.periph - whether subplot was occupied >80% of surveys where bats were present at the roost (core) or <80% (peripheral) - see definition and justification in manuscript - NN.distance - the average distance between trees per subplot (i.e. nearest neighbors) - plotID- unique site*subplot ID number - Roost.Area - the total area (meters squared) of the roost per roost, calculated from the roost perimeter [roost-level predictor/independent variable] - roost.perimeter- the total perimeter (meters of the roost per roost, calculated from the roost perimeter - Roost.Available.Trees - a count of all tagged midstory, canopy and overstory trees within the roost - Roost.Index.Abundance - an estimate of roost abundance per roost. Index categories were as follows: 1 = 1-499 bats; 2 = 500-2,499 bats; 3 = 2,500 - 4,999 bats; 4 = 5,000 - 9,999 bats; 5 = 10,000 - 15,999 bats; 6 = 16,000 - 49,999 bats; and 7 = > 50,000 bat [roost-level predictor/independent variable] - Roost.Abundance - the abundance estimate of the roost per roost, estimated from direct census counts or taken from council estimates - tree.accession - unique tree ID. Name is structured as DAVO(site) 01(plot number) 001(tree number) - Tree.Abundance.all - an estimate of abundance per tree, from index abundance values for all trees [response/dependent variable: 'tree-level abundance'] - Tree.Preference.all - indicates tree preference for roosting: whether a tree is occupied =>80% of surveys (core trees=1) or less (peripheral trees=0) per tree [tree-level predictor/independent variable] - Tree.Occupancy.all - indicates tree preference for roosting: is the proportion of times a tree is occupied across the survey per tree. This is calculated for surveys when bats are present, only - Tree.Abundance.subset - a direct count of abundance per tree, from a subset of trees (N=6 per plot + zero values) - max - maximum roosting height of bat species (meters), measured for a subset of trees only - min - minimum roosting height of bat species (meters), measured for a subset of trees only - Tree.Height.Range.subset - the difference between the highest and lowest bat per tree, taken for a subset of trees only - value_dirichlet - the calculated crown area (meters squared) - Tree.Density.subset - the density of bats per tree, estimated as the total count by the height range and crown area, for a subset of trees only [response/dependent variable: 'tree-level 3-D density'] - Plot.Density.Trees - the density of midstory, canopy and overstory trees per subplot [subplot-level predictor/independent variable] - Roost.Density.Trees - the density of tagged midstory, canopy and overstory trees per roost [roost-level predictor/independent variable]
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

Population and Housing Census of 2007 - Ethiopia

Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Household Person Housing unit Universe --------------------------- The census has counted people on dejure and defacto basis. The dejure population comprises all the persons who belong to a given area at a given time by virtue of usual residence, while under defacto approach people were counted as the residents of the place where they found. In the census, a person is said to be a usual resident of a household (and hence an area) if he/she has been residing in the household continuously for at least six months before the census day or intends to reside in the household for six months or longer. Thus, visitors are not included with the usual (dejure) population. Homeless persons were enumerated in the place where they spent the night on the enumeration day. The 2007 census counted foreign nationals who were residing in the city administration. On the other hand all Ethiopians living abroad were not counted. Kind of data --------------------------- Census/enumeration data [cen] Mode of data collection --------------------------- Face-to-face [f2f] Research instrument --------------------------- Two type sof questionnaires were used to collect census data: i) Short questionnaire ii) Long questionnaire Unlike the previous censuses, the contents of the short and long questionnaires were similar both for the urban and rural areas as well as for the entire city. But the short and the long questionnaires differ by the number of variables they contained. That is, the short questionnaire was used to collect basic data on population characteristics, such as population size, sex, age, language, ethnic group, religion, orphanhood and disability. Whereas the long questionnaire includes information on marital status, education, economic activity, migration, fertility, mortality, as well as housing stocks and conditions in addition to those questions contained in a short questionnaire.

catalog.ihsn.org 收录

2022_张家界市标准地图行政区划示意版32开

基于湖南省基础地理信息数据库,依据湖南省行政区划界线标准画法和最新境界、标准地名成果,采用其他自然地理要素和人文专题要素的现势性资料编制而成。

湖南大数据交易所 收录

RFUAV

RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。

arXiv 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录