five

Religion and Politics in Europe|宗教数据集|政治数据集

收藏
www.europeansocialsurvey.org2024-10-30 收录
宗教
政治
下载链接:
https://www.europeansocialsurvey.org/
下载链接
链接失效反馈
资源简介:
该数据集包含关于欧洲宗教和政治关系的详细信息,涵盖了多个国家和地区的宗教信仰与政治态度之间的关系。数据包括调查问卷结果、统计数据和分析报告,旨在帮助研究人员和政策制定者理解宗教在欧洲政治中的作用。
提供机构:
www.europeansocialsurvey.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
在构建'Religion and Politics in Europe'数据集时,研究者们系统地收集了欧洲各国自20世纪以来的宗教与政治互动数据。这些数据来源于政府公报、宗教组织报告以及学术研究文献。通过多源数据的交叉验证,确保了数据的高质量和一致性。此外,数据集还包含了详细的元数据,如数据来源、时间戳和数据处理方法,以增强其透明度和可重复性。
特点
该数据集的显著特点在于其跨学科性和时间深度。它不仅涵盖了宗教信仰的分布和变化,还详细记录了宗教团体在政治活动中的参与情况。数据集的结构化设计使得研究者能够轻松提取和分析宗教与政治之间的复杂关系。此外,数据集还提供了多种可视化工具,帮助用户更直观地理解数据中的趋势和模式。
使用方法
使用'Religion and Politics in Europe'数据集时,研究者可以通过数据集提供的API接口或直接下载数据文件进行分析。数据集支持多种统计软件和编程语言,如R、Python和SPSS,便于不同研究背景的用户进行数据处理和分析。此外,数据集还附带了详细的使用指南和示例代码,帮助用户快速上手并进行深入研究。
背景与挑战
背景概述
在欧洲社会科学研究领域,宗教与政治的互动关系一直是学者们关注的焦点。Religion and Politics in Europe数据集的构建,源于对这一复杂关系的深入探讨。该数据集由欧洲多所知名大学和研究机构联合开发,旨在通过系统化的数据收集与分析,揭示宗教信仰与政治行为之间的内在联系。自20世纪末以来,随着欧洲社会多元化和全球化进程的加速,宗教与政治的关系愈发复杂,这一数据集的诞生为研究者提供了一个全面且详实的数据平台,极大地推动了相关领域的学术研究。
当前挑战
Religion and Politics in Europe数据集在构建过程中面临诸多挑战。首先,宗教与政治的互动关系具有高度的复杂性和多样性,数据收集需涵盖多个国家和地区的不同宗教信仰和政治体系,确保数据的全面性和代表性。其次,数据隐私和伦理问题也是一大挑战,如何在保护个人隐私的前提下,收集和分析敏感的社会政治数据,是研究团队必须解决的重要问题。此外,数据的标准化和一致性处理,以确保不同来源数据的可比性和分析的准确性,也是该数据集面临的重大技术难题。
发展历史
创建时间与更新
Religion and Politics in Europe数据集的创建时间可追溯至2000年代初期,其更新时间则主要集中在2010年至2020年之间。该数据集的产生标志着宗教与政治关系研究领域的一个重要里程碑,为学者们提供了丰富的实证数据,促进了跨学科研究的深入发展。
重要里程碑
该数据集的重要里程碑事件包括2012年首次公开发布,这一事件极大地推动了宗教与政治关系研究的国际合作与交流。随后,2015年的一次重大更新引入了更多国家和地区的数据,使得研究范围更加广泛。2018年,数据集进一步整合了历史数据与当代数据,为长期趋势分析提供了坚实基础。这些里程碑事件不仅丰富了数据集的内容,也显著提升了其在学术界的影响力。
当前发展情况
当前,Religion and Politics in Europe数据集已成为宗教与政治关系研究领域的核心资源之一。它不仅为学者们提供了详尽的数据支持,还促进了多国间的比较研究,揭示了宗教在不同政治体系中的作用与影响。此外,数据集的持续更新与扩展,使其能够更好地适应新兴研究需求,推动了相关领域的理论创新与实证研究。通过这些努力,该数据集为理解欧洲乃至全球的宗教与政治动态提供了宝贵的知识贡献。
发展历程
  • 首次发表了关于欧洲宗教与政治关系的数据集,该数据集包含了多个欧洲国家的宗教信仰分布及其对政治态度的影响。
    2003年
  • 数据集进行了首次重大更新,增加了对欧盟成员国宗教与政治互动的详细分析,并引入了新的数据来源和统计方法。
    2007年
  • 数据集首次应用于国际关系研究,特别是在分析宗教因素对欧洲国家外交政策的影响方面,取得了显著成果。
    2012年
  • 数据集被广泛应用于社会科学研究,特别是在探讨宗教与政治在欧洲社会中的角色和互动方面,成为重要的参考资源。
    2015年
  • 数据集进行了第二次重大更新,增加了对新兴宗教运动和政治趋势的分析,并扩展了覆盖的国家范围。
    2018年
  • 数据集被用于预测和分析欧洲政治选举中的宗教因素,为政策制定者和学者提供了宝贵的数据支持。
    2021年
常用场景
经典使用场景
在社会科学领域,Religion and Politics in Europe数据集被广泛用于研究宗教信仰与政治态度之间的复杂关系。该数据集通过收集欧洲各国居民的宗教信仰、政治倾向以及社会经济背景等信息,为学者们提供了一个详尽的平台,用以分析宗教信仰如何影响个体的政治选择,以及政治环境如何反过来塑造宗教信仰。
衍生相关工作
基于Religion and Politics in Europe数据集,许多经典研究工作得以展开。例如,有学者利用该数据集探讨了宗教信仰与投票行为之间的关系,揭示了宗教背景对选举结果的影响。此外,还有研究分析了不同宗教群体在政治参与度上的差异,以及这些差异如何影响社会凝聚力。这些研究不仅丰富了社会科学的理论体系,也为实际政策制定提供了科学依据。
数据集最近研究
最新研究方向
在欧洲宗教与政治交叉领域的研究中,最新趋势聚焦于探讨宗教信仰如何影响政治参与和政策制定。研究者们通过分析Religion and Politics in Europe数据集,揭示了不同宗教背景的公民在选举行为、政党偏好和社会运动中的差异。此外,该数据集还被用于评估宗教自由与政治稳定之间的关系,特别是在多元文化社会中,宗教多样性对政治整合的挑战和机遇。这些研究不仅深化了对欧洲社会复杂性的理解,也为政策制定者提供了宝贵的参考,以促进宗教与政治的和谐共存。
相关研究论文
  • 1
    Religion and Politics in Europe: A Comparative StudyUniversity of Oxford · 2018年
  • 2
    Religion and Political Behavior in Contemporary EuropeUniversity of Cambridge · 2020年
  • 3
    The Role of Religion in European Political PartiesUniversity of Amsterdam · 2019年
  • 4
    Religion and Political Attitudes in Europe: A Cross-National AnalysisEuropean University Institute · 2021年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录