RML2016.10a|无线电调制识别数据集|机器学习数据集
收藏数据集概述
数据集生成环境
- 操作系统:基于WSL2的Ubuntu18.04
- 软件:GNURadio 3.7,gr-mapper
数据准备
- 音频文件转换:将用于FM调制的.mp3音频文件转换为.wav文件。
数据集生成脚本
- 脚本名称:generate_RML2016.10a.py
- 脚本修改:针对.mp3转换为.wav的问题,对原生成脚本进行了修改,使其可以读取.wav文件。
- 文件存放位置:.wav文件需放在./source_material文件夹中。
生成的数据库
- 数据库文件:RML2016.10a_dict.dat
- 保存方式:由python2下的cPickle自动保存。
- 读取方式:如使用python3,应使用以下代码读取: python import pickle Xd = pickle.load(open("RML2016.10a_dict.dat","rb"),encoding="bytes")

CosyVoice 2
CosyVoice 2是由阿里巴巴集团开发的多语言语音合成数据集,旨在通过大规模多语言数据集训练,实现高质量的流式语音合成。数据集通过有限标量量化技术改进语音令牌的利用率,并结合预训练的大型语言模型作为骨干,支持流式和非流式合成。数据集的创建过程包括文本令牌化、监督语义语音令牌化、统一文本-语音语言模型和块感知流匹配模型等步骤。该数据集主要应用于语音合成领域,旨在解决高延迟和低自然度的问题,提供接近人类水平的语音合成质量。
arXiv 收录
FER2013
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。
github 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录
PlantVillage
在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。
OpenDataLab 收录
TCIA
TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。
www.cancerimagingarchive.net 收录