five

Data from: Recovery from hybrid breakdown in a marine invertebrate is faster, stronger and more repeatable under environmental stress|环境压力数据集|遗传适应性数据集

收藏
DataONE2016-06-02 更新2024-06-26 收录
环境压力
遗传适应性
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Understanding how environmental stress alters the consequences of hybridization is important, because the rate of hybridization and the likelihood of hybrid speciation both appear elevated in harsh, disturbed or marginal habitats. We assessed fitness, morphometrics and molecular genetic composition over 14 generations of hybridization between two highly divergent populations of the marine copepod Tigriopus californicus. Replicated, experimental hybrid populations in both control and high salinity conditions showed a decline in fitness, followed by a recovery. Recovery was faster in the salinity stress treatment, returning to parental levels up to two generations earlier than in the control. This recovery was stable in the high salinity treatment, while in the control treatment fitness dropped back below parental levels at the final time point. Recovery in the high salinity treatment was also stronger in terms of competitive fitness and heat shock tolerance. Finally, consequences of hybridization were more repeatable under salinity stress, where among-replicate variance for survivorship and molecular genetic composition was lower than in the control treatment. In a system with low effective population sizes (estimates ranged from 17 to 63), where genetic drift might be expected to be the predominate force, strong selection under harsh environmental conditions apparently promoted faster, stronger and more repeatable recovery from depressed hybrid fitness.
创建时间:
2016-06-02
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录

鸣潮角色TTS数据集

鸣潮角色语音数据集是基于Bert-vits2开源项目制作的,包含了鸣潮游戏1.0至1.3版本的中、日、英、韩全角色语音。它提供了单角色包和完整包以满足不同用户的需求,每个语音文件都有对应的文本标注,方便进行语音识别和训练。数据集中的语音按类别整理,包括战斗语音、带变量语音等,分类清晰,便于查找和使用。用户可以在ModelScope平台直接下载数据集,无需登录。此数据集仅供个人欣赏和学习交流使用,不得用于商业用途或非法活动。鸣潮角色语音数据集旨在支持AI语音合成和识别技术的研究与开发,为用户提供了一个丰富的多角色、多语种的语音资源库。

魔搭社区 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录