five

Metadata|口腔医学数据集|材料科学数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
口腔医学
材料科学
下载链接:
https://figshare.com/articles/dataset/Metadata/22568581/2
下载链接
链接失效反馈
资源简介:
Effect of Green Tea Extract Antioxidant on Dentin Shear Bond Strength and Resin-Tag Penetration Depth after Non-vital Bleaching This study aimed to evaluate the effect of 10% and 35% green tea (10% and 35% GT) extract as an antioxidant after 2 minutes of application on dentin shear bond strength and resin tags penetration depth after non-vital bleaching. This research was conducted at the Chemistry Laboratory, Faculty of Medicine, University of Indonesia, and the Dental Materials Research and Development Laboratory, Faculty of Dentistry, University of Indonesia, in March-April 2022. This study was approved by the Ethics Committee (10/Ethical Approval/FKGUI/III/2022; 09/Ethical Exempted/FKGUI/IV/2022) and conducted in accordance with the Declaration of Helsinki. Thirty extracted maxilla premolars for orthodontics reasons, free of caries, fractures, and defects included in this study. The teeth were soaked in a thymol solution (0.1%; pH 7.0) for 1-week post extraction. Then, after 1 week the teeth were placed in 4oC distilled water, and had to be used within 1 month post extraction. The root portion of each tooth was removed 2 mm below the cement-enamel junction with a double-side disc diamond bur (Buehler, Lake Bluff, IL, USA). The coronal portion was sectioned mesiodistally, and the buccal and palatal portions were used, and it is considered as one specimen each portion. The dentin surfaces of specimen were flattened using 600- and 1200-grit sandpaper and polished with felt discs (Arotec, Cotia, SP, Brazil) impregnated with alumina paste (0.5 μm). The specimens were washed ultrasonically in distilled water for 5 minutes to eliminate any residues. For shear bond strength test, the specimens were fixed in a self-cure acrylic 20 mm and for resin tag penetration test the specimens were fix in plasticine 1x1 mm. A mold with a diameter of 2 mm is glued over the specimen in the pulp chamber using plasticine. The specimens were randomly divided into 5 groups (For resin tag penetration test n=6, for shear bond strength test n=5). Group 1: Non-bleached without green tea extract (normal dentin/negative control group), Group 2: Bleached without green tea extract (post bleaching dentin/positive control group), Group 3: Bleached without green tea extract and delay for 2 weeks before being restored (delay 2 weeks). Group 4: Bleached+10% Green tea extract for 2 min (10% GT), Group 5: Bleached+35% Green tea extract for 2 min (35% GT). The shear bond strength assessment was done using a Universal Testing Machine with a 0.5 mm/minute cross-head speed. Confocal Laser Scanning Microscopy (CLSM) with a wavelength of 560 nm and a lens magnification of 40x was used to analyze the resin tag penetration by the fluorescence glow of rhodamine B.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

猫狗分类

## 数据集描述 ### 数据集简介 本数据集是简单的猫狗二分类数据集,共2个类别,其中训练集包含275张带注释的图像,验证集包含70张带注释的图像。整个数据集共10.3MB,可用于快速模型验证、性能评估、小数据集训练等。 ### 数据集支持的任务 可用于快速模型验证、性能评估、小数据集训练等。 ## 数据集的格式和结构 ### 数据格式 数据集包括训练集train和验证集val,train和val文件夹之下按文件夹进行分类,共有2个子文件夹,同类别标签的图片在同一个文件夹下,图片格式为JPG。同时包含与标注文件中label id相对应的类名文件classname.txt。 ### 数据集加载方式 ```python from modelscope.msdatasets import MsDataset from modelscope.utils.constant import DownloadMode ms_train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') # 加载训练集 print(next(iter(ms_train_dataset))) ms_val_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') # 加载验证集 print(next(iter(ms_val_dataset))) ``` ### 数据分片 本数据集包含train和val数据集。 | 子数据集 | train | val | test | |---------|-------------:|-----------:|---------:| | default | 训练集 | 验证集 | / | ### Clone with HTTP ```bash git clone https://www.modelscope.cn/datasets/tany0699/cats_and_dogs.git ```

魔搭社区 收录