five

Metadata|口腔医学数据集|材料科学数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
口腔医学
材料科学
下载链接:
https://figshare.com/articles/dataset/Metadata/22568581/2
下载链接
链接失效反馈
资源简介:
Effect of Green Tea Extract Antioxidant on Dentin Shear Bond Strength and Resin-Tag Penetration Depth after Non-vital Bleaching This study aimed to evaluate the effect of 10% and 35% green tea (10% and 35% GT) extract as an antioxidant after 2 minutes of application on dentin shear bond strength and resin tags penetration depth after non-vital bleaching. This research was conducted at the Chemistry Laboratory, Faculty of Medicine, University of Indonesia, and the Dental Materials Research and Development Laboratory, Faculty of Dentistry, University of Indonesia, in March-April 2022. This study was approved by the Ethics Committee (10/Ethical Approval/FKGUI/III/2022; 09/Ethical Exempted/FKGUI/IV/2022) and conducted in accordance with the Declaration of Helsinki. Thirty extracted maxilla premolars for orthodontics reasons, free of caries, fractures, and defects included in this study. The teeth were soaked in a thymol solution (0.1%; pH 7.0) for 1-week post extraction. Then, after 1 week the teeth were placed in 4oC distilled water, and had to be used within 1 month post extraction. The root portion of each tooth was removed 2 mm below the cement-enamel junction with a double-side disc diamond bur (Buehler, Lake Bluff, IL, USA). The coronal portion was sectioned mesiodistally, and the buccal and palatal portions were used, and it is considered as one specimen each portion. The dentin surfaces of specimen were flattened using 600- and 1200-grit sandpaper and polished with felt discs (Arotec, Cotia, SP, Brazil) impregnated with alumina paste (0.5 μm). The specimens were washed ultrasonically in distilled water for 5 minutes to eliminate any residues. For shear bond strength test, the specimens were fixed in a self-cure acrylic 20 mm and for resin tag penetration test the specimens were fix in plasticine 1x1 mm. A mold with a diameter of 2 mm is glued over the specimen in the pulp chamber using plasticine. The specimens were randomly divided into 5 groups (For resin tag penetration test n=6, for shear bond strength test n=5). Group 1: Non-bleached without green tea extract (normal dentin/negative control group), Group 2: Bleached without green tea extract (post bleaching dentin/positive control group), Group 3: Bleached without green tea extract and delay for 2 weeks before being restored (delay 2 weeks). Group 4: Bleached+10% Green tea extract for 2 min (10% GT), Group 5: Bleached+35% Green tea extract for 2 min (35% GT). The shear bond strength assessment was done using a Universal Testing Machine with a 0.5 mm/minute cross-head speed. Confocal Laser Scanning Microscopy (CLSM) with a wavelength of 560 nm and a lens magnification of 40x was used to analyze the resin tag penetration by the fluorescence glow of rhodamine B.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录