five

江门市跨龙村行政给付信息|行政管理数据集|数据分析数据集

收藏
开放广东2023-10-12 更新2024-02-29 收录
行政管理
数据分析
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
该信息类包含了2022年至今江门市跨龙村行政给付信息,指江门市政务服务数据管理局对事项信息进行跟踪、采集、分析、预测、公布的活动。本信息以各大平台数据汇总为基础,并采取数据检测等手段,加强对事项信息分析,提高数据的时效性和准确性。
提供机构:
江门市
创建时间:
2023-01-14
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

CESNET-TimeSeries24

CESNET-TimeSeries24数据集是由捷克技术大学和CESNET合作创建的,用于网络流量异常检测和预测的时间序列数据集。该数据集包含了40周内275,124个活跃IP地址的网络流量数据,涵盖了多种设备和网络异常类型。数据集的创建过程包括数据捕获、时间序列聚合和匿名化处理,确保了数据的真实性和隐私保护。该数据集主要应用于网络流量监控、资源分配和服务编排等领域,旨在解决网络流量预测和异常检测中的实际问题。

arXiv 收录

XS-Video

XS-Video数据集是由中国科学院自动化研究所MAIS实验室提出的一个大规模现实世界短视频传播数据集。该数据集收集了来自中国五大平台(抖音、快手、西瓜视频、今日头条、哔哩哔哩)的117720个短视频,包含381926个样本和535个话题,覆盖了从发布后的互动信息,如观看、点赞、分享、收藏、粉丝和评论等。数据集通过跨平台指标对齐方法,对视频的长期传播影响力进行评分,分为0到9级,旨在为短视频传播研究提供全面的互动信息和内容特征。

arXiv 收录

FishBase Distribution

FishBase Distribution 数据集包含了全球鱼类的分布信息,包括鱼类的地理分布、栖息地类型、分布范围等详细数据。

www.fishbase.se 收录

Vehicle Energy Dataset (VED)

Vehicle Energy Dataset (VED)是由密歇根大学创建的一个大规模数据集,包含从2017年11月至2018年11月期间,在美国密歇根州安娜堡收集的383辆个人汽车的燃油和能量数据。该数据集捕捉了车辆的GPS轨迹以及燃油、能量、速度和辅助电源使用的时间序列数据。数据集中的车辆类型多样,包括264辆汽油车、92辆混合动力车和27辆插电式混合动力/电动车。VED数据集总里程约374,000英里,涵盖了从高速公路到交通密集的市中心区域等各种驾驶条件和季节。数据集创建过程中,研究团队通过安装在车辆上的OBD-II记录器收集数据,并对个人身份信息进行了去标识化处理,以保护参与者隐私。VED数据集的应用领域广泛,包括车辆能源消耗建模、驾驶员行为建模、机器学习和深度学习、交通模拟器的校准、最佳路线选择模型、人类驾驶员行为预测以及自动驾驶汽车的决策制定等。

arXiv 收录