five

Canadian Gallup Poll, January 1985, #493_1|民意调查数据集|政治议题数据集

收藏
DataONE2023-06-23 更新2024-06-08 收录
民意调查
政治议题
下载链接:
https://search.dataone.org/view/sha256:6ccf86c75d0377e30764cefca852f113f43f085e73928d804af7dac87e203a5f
下载链接
链接失效反馈
资源简介:
This Gallup poll seeks the opinions of Canadians, on predominantly political issues. The questions ask opinions about political leaders and political parties within the country. There are also questions on other topics of interest and importance to the country and government, such as unemployment, pension plans and predictions for 2005. The respondents were also asked questions so that they could be grouped according to geographical variables. Topics of interest include: the approval of Broadbent as NDP leader; the approval of Mulroney as Prime Minister; the approval of Turner as leader of the opposition; confidence in the government's handling of unemployment; the effect of advertisement on interest levels; fulfilling wishes; the main causes of unemployment; mandatory retirement at age 65; opinions about the Liberal party; opinions about the NDP; opinions about the Progressive Conservative party; predictions for 2005; and providing pension plans. Basic demographic variables are also included.
创建时间:
2024-03-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

N-MNIST (Neuromorphic-MNIST)

简要说明 Neuromorphic-MNIST (N-MNIST) 数据集是原始基于帧的 MNIST 数据集的尖峰版本。它由与原始 MNIST 数据集相同的 60 000 个训练样本和 10 000 个测试样本组成,并以与原始 MNIST 数据集(28x28 像素)相同的视觉比例捕获。 N-MNIST 数据集是通过将 ATIS 传感器安装在电动云台装置上并让传感器在 LCD 监视器上查看 MNIST 示例时移动来捕获的,如本视频所示。可以在下面的论文中找到对数据集及其创建方式的完整描述。如果您使用数据集,请引用本文。果园,G。科恩,G。贾亚万特,A。和 Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades”,《神经科学前沿》,第 9 卷,第 437 期,2015 年 10 月

OpenDataLab 收录

TILDA 400

Textile Texture Database (TILDA) for defect detection

kaggle 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

乳腺癌患者检查结果

该数据采集来自乳腺癌随访微信小程序,共采集499例患者肿瘤分级、分期、血生化检测等指标,目的在于通过监测乳腺癌患者指标的高低对患者进行预后风险评估,通过指标的高低及时发现复发征兆并及时采取措施,同时可为复发风险提供参考。

国家人口健康科学数据中心 收录