five

Data from: Significant genetic mixing and great genetic diversity at continental scale in two pollinator/aphid predator species: Episyrphus balteatus and Sphaerophoria scripta (Diptera: syrphidea)|昆虫生态学数据集|遗传多样性数据集

收藏
DataONE2013-08-14 更新2024-06-27 收录
昆虫生态学
遗传多样性
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Population structure of pests and beneficial species is an important issue when designing management strategies to optimize ecosystem services. In this study, we investigated for the first time the population structure at a continental scale of two migratory species of hoverflies providing both pest regulation and pollination services (Episyrphus balteatus and Sphaerophoria scripta (Diptera: Syrphidae)). To achieve this objective, we used two sets of 12 species specific microsatellite markers on a large scale sampling from all over Europe. Our findings showed a high level of genetic mixing resulting in a lack of genetic differentiation at a continental scale, and a great genetic diversity in the two species. All the pair wise Fst values between European localities were less 0.05 in the two species. These low values reflect a large scale genetic mixing probably caused by the existence of frequent migratory movements in the two species. Mantel tests revealed isolation by distance pattern on the East-West axis, but not on the North-South axis. This isolation by distance pattern confirms the existence of North-South migratory movements in both directions and suggests an important step by step dispersal. Population features shown by this study are common in invasive species and pests but are not often observed in beneficial species. They reflect great colonization abilities and a high adaptive potential when dealing with a changing environment. Our results highlight the two studied species as particularly interesting beneficial insects for pollination and pest predation in the current context of global change.
创建时间:
2013-08-14
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

中国省级灾害统计空间分布数据集(1999-2020年)

该数据集为中国省级灾害统计空间分布数据集,时间为1999-2020年。该数据集包含中国各省自然灾害、地质灾害、地震灾害、森林火灾、森林病虫鼠害、草原灾害六类灾害的详细数据。数据量为206MB,数据格式为excel。

国家地球系统科学数据中心 收录

Global Flood Database (GFD)

全球洪水数据库(GFD)是一个包含全球范围内洪水事件记录的数据集。该数据集提供了详细的洪水事件信息,包括洪水发生的时间、地点、影响范围、受灾人口和财产损失等。数据集的目的是为了支持洪水风险评估、灾害管理和气候变化研究。

global-flood-database.cloudtostreet.info 收录

RadDet

RadDet是一个包含11种雷达类别的数据集,包括6种新的低概率干扰(LPI)多相码(P1, P2, P3, P4, Px, Zadoff-Chu)和一种新的宽带调频连续波(FMCW)。数据集覆盖500 MHz频段,包含40,000个雷达帧,分为训练集、验证集和测试集。数据集在两种不同的雷达环境中提供:稀疏数据集(RadDet-1T)和密集数据集(RadDet-9T)。

github 收录

riotu-lab/Synthetic-UAV-Flight-Trajectories

该数据集包含超过5000条随机无人机(UAV)轨迹,这些轨迹是在20小时的飞行时间内收集的,主要用于训练AI模型,如轨迹预测应用。数据集通过自动化管道生成和预处理无人机合成轨迹,使其可以直接用于AI模型训练。数据集的特点是参数化的轨迹,遵循预定义的模式,特别是圆形和无限路径。数据集的结构包括数据字段,如时间戳和无人机的3D位置(x, y, z坐标)。

hugging_face 收录