five

Data from: Significant genetic mixing and great genetic diversity at continental scale in two pollinator/aphid predator species: Episyrphus balteatus and Sphaerophoria scripta (Diptera: syrphidea)|昆虫生态学数据集|遗传多样性数据集

收藏
DataONE2013-08-14 更新2024-06-27 收录
昆虫生态学
遗传多样性
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Population structure of pests and beneficial species is an important issue when designing management strategies to optimize ecosystem services. In this study, we investigated for the first time the population structure at a continental scale of two migratory species of hoverflies providing both pest regulation and pollination services (Episyrphus balteatus and Sphaerophoria scripta (Diptera: Syrphidae)). To achieve this objective, we used two sets of 12 species specific microsatellite markers on a large scale sampling from all over Europe. Our findings showed a high level of genetic mixing resulting in a lack of genetic differentiation at a continental scale, and a great genetic diversity in the two species. All the pair wise Fst values between European localities were less 0.05 in the two species. These low values reflect a large scale genetic mixing probably caused by the existence of frequent migratory movements in the two species. Mantel tests revealed isolation by distance pattern on the East-West axis, but not on the North-South axis. This isolation by distance pattern confirms the existence of North-South migratory movements in both directions and suggests an important step by step dispersal. Population features shown by this study are common in invasive species and pests but are not often observed in beneficial species. They reflect great colonization abilities and a high adaptive potential when dealing with a changing environment. Our results highlight the two studied species as particularly interesting beneficial insects for pollination and pest predation in the current context of global change.
创建时间:
2013-08-14
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Rail-DB

Rail-DB是由深圳技术大学创建的铁路检测数据集,包含7432对图像及其标注,涵盖多种光照、道路结构和视角条件。数据集中的轨道通过多边形进行标注,并根据背景被分为九种场景。Rail-DB旨在推动铁路检测算法的进步和比较,通过提供多样化的真实世界铁路图像,增强算法的鲁棒性。此外,数据集的创建过程包括从真实世界火车视频中获取图像,通过粗略和精细两个阶段进行标注,确保标注的准确性和完整性。Rail-DB的应用领域主要集中在铁路异常检测,特别是铁路区域的识别,以提高铁路安全和维护效率。

arXiv 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

MineNetCD

MineNetCD数据集由慕尼黑工业大学等机构创建,是一个全球矿区变化检测的综合基准数据集。该数据集包含超过70k对的双时相高分辨率遥感图像,覆盖全球100个矿区,总面积约6756.88平方公里。数据集的创建过程结合了半自动标注和专家手动标注,确保了数据的精细度和准确性。MineNetCD数据集主要应用于矿区环境监测和可持续发展研究,旨在通过高精度的变化检测技术,帮助实现矿区的可持续管理和环境保护。

arXiv 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org 收录