five

Data from: Surrounding pathogens shape maternal egg care but not egg production in the European earwig|生态学数据集|母性行为数据集

收藏
DataONE2017-09-21 更新2024-06-26 收录
生态学
母性行为
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Pathogens are ubiquitous in nature and typically entail major fitness costs in their hosts. These costs can be particularly important when individuals exhibit poor immune defenses, as it is often the case during early developmental stages. Hence, selection should favor parental strategies limiting the risks of pathogen exposure and infection in their offspring. In this study, we investigated 1) whether females of the European earwig Forficula auricularia avoid areas contaminated with spores of the entomopathogenic fungus Metarhizium brunneum prior to and at egg laying, as well as 2) whether spore presence entails an increase in females’ investment into both pre-hatching forms of care and clutch quantity and quality. Our results first show that females did not avoid contaminated areas prior to and at egg laying. However, females returned to their eggs faster in presence of living spores compared to UV-killed or no spores. They were also more likely to construct a nest when in presence of both living and UV-killed spores (but only in one studied population). Finally, we found that spore presence did not influence maternal investment into egg grooming, egg gathering and egg defense, as well as into clutch quantity and quality. Overall, our results demonstrate that earwig females do not avoid contaminated environments, but could mitigate the associated costs of pathogen exposure by adjusting their level of egg care. These findings emphasize the importance of pathogens in the evolution of pre-hatching parental care and, more generally, in the emergence and maintenance of family life in nature.
创建时间:
2017-09-21
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

Kaggle: Bike Sharing Demand

该数据集包含自行车共享系统的使用情况,包括日期、时间、天气条件、温度、湿度等信息,以及每小时的自行车租赁数量。

www.kaggle.com 收录

大学生运动和体质健康数据集(2014-2023)

《大学生运动与体质健康数据集(2014-2023)》涵盖了大学生群体在运动能力、基础身体形态、身体机能及身体素质等多个方面的关键基础数据。该数据集的采集时间跨度为2014年至2023年,样本采集自全国34个省级行政区域,共计123281名大学生参与,平均年龄为20.53岁。建立大学生运动和体质健康数据集可以准确把握学生体质健康的整体水平和变化趋势,了解大学生运动和体质健康状况,对指导个性化健康干预、优化体育教育资源配置、支持促进科学研究以及提高公众健康意识等均具有重要意义。

国家人口健康科学数据中心 收录