Maps for Heroes of Might and Magic|游戏地图数据集|策略游戏数据集
收藏Yahoo Finance
Dataset About finance related to stock market
kaggle 收录
MedDialog
MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。
github 收录
TongueDx Dataset
TongueDx数据集是一个专为远程舌诊研究设计的综合性舌象图像数据集,由香港理工大学和新加坡管理大学的研究团队创建。该数据集包含5109张图像,涵盖了多种环境条件下的舌象,图像通过智能手机和笔记本电脑摄像头采集,具有较高的多样性和代表性。数据集不仅包含舌象图像,还提供了详细的舌面属性标注,如舌色、舌苔厚度等,并附有受试者的年龄、性别等人口统计信息。数据集的创建过程包括图像采集、舌象分割、标准化处理和多标签标注,旨在解决远程医疗中舌诊图像质量不一致的问题。该数据集的应用领域主要集中在远程医疗和中医诊断,旨在通过自动化技术提高舌诊的准确性和可靠性。
arXiv 收录
HotpotQA
HotpotQA 是收集在英语维基百科上的问答数据集,包含大约 113K 众包问题,这些问题的构建需要两篇维基百科文章的介绍段落才能回答。数据集中的每个问题都带有两个黄金段落,以及这些段落中的句子列表,众包工作人员认为这些句子是回答问题所必需的支持事实。 HotpotQA 提供了多种推理策略,包括涉及问题中缺失实体的问题、交叉问题(什么满足属性 A 和属性 B?)和比较问题,其中两个实体通过一个共同属性进行比较等。在少文档干扰设置中,QA 模型有 10 个段落,保证能找到黄金段落;在开放域全维基设置中,模型只给出问题和整个维基百科。模型根据其答案准确性和可解释性进行评估,其中前者被测量为具有完全匹配 (EM) 和 unigram F1 的预测答案和黄金答案之间的重叠,后者关注预测的支持事实句子与人类注释的匹配程度(Supporting Fact EM/F1)。该数据集还报告了一个联合指标,它鼓励系统同时在两项任务上表现良好。 来源:通过迭代查询生成回答复杂的开放域问题
OpenDataLab 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录