密云区残疾人就业指导中心信息|残疾人就业数据集|公共服务数据集
收藏中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
Pima Indians Diabetes Database
该项目使用的数据集是Pima Indians Diabetes Database,来源于UCI机器学习库。该数据集包含多个医学预测变量和一个目标变量,即Outcome,用于指示患者是否患有糖尿病(1)或未患(0)。
github 收录
ner_training_stanza
该数据集包含文本数据及其相应的命名实体识别信息。文本被分词,并且命名实体识别信息既包括词级别也包括字符级别。数据集分为训练集、验证集和测试集,适用于进一步的自然语言处理任务。
huggingface 收录
HyperGlobal-450K - 全球最大规模高光谱图像数据集
HyperGlobal-450K数据集由武汉大学联合国内外多所知名高校及研究机构共同构建,是迄今为止全球规模最大的高光谱图像数据集。该数据集包含约45万张高光谱图像,规模等价于超过2000万张不重叠的三波段图像,远超现有的同类数据集。数据集涵盖了全球范围内的高光谱遥感图像,包括来自地球观测一号(EO-1)Hyperion和高分五号(GF-5B)两种传感器的图像,光谱范围从可见光到短波及中波红外,具有从紫外到长波红外的330个光谱波段,空间分辨率为30米。每幅图像经过精心处理,去除了无效波段和水汽吸收波段,保留了具有实际应用价值的光谱信息。HyperGlobal-450K数据集不仅支持高光谱图像的基础研究,还能够用于开发和测试各种高光谱图像处理方法,比如图像分类、目标检测、异常检测、变化检测、光谱解混、图像去噪和超分辨率等任务。
github 收录
Plant-Diseases
Dataset for Plant Diseases containg variours Plant Disease
kaggle 收录
