Burkina Faso National Nutrition Survey 2011|营养调查数据集|儿童健康数据集
收藏中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
Spatial_Navigation
这是一个专注于四个代表性任务的多模态增强数据集,这些任务需要不同程度的视觉参与和跨模态交互,包括拼图组装、空间导航、视觉搜索和图表重聚焦。
huggingface 收录
THCHS-30
“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”
OpenDataLab 收录
DIOR
“DIOR” 是用于光学遥感图像中对象检测的大规模基准数据集,该数据集由23,463图像和带有水平边界框注释的192,518对象实例组成。
OpenDataLab 收录
全球1km分辨率大气二氧化碳浓度数据集(2003-2023)
持续增加的人为CO₂排放导致了全球变暖和气候变化,进而引发了全球范围的重大环境、经济和健康损失,基于卫星遥感数据准确连续地监测大气CO₂变化对于理解全球碳循环、评估碳源和碳汇的分布以及制定有效的减排政策至关重要。大气CO2柱浓度(XCO2)指从地表到大气顶层干燥空气柱中CO2的平均体积比,是用来表征大气中CO2分子含量的物理量。当前已公开发表的全球无缝XCO2产品存在无法同时提供长时间跨度和高时空分辨率的问题,限制了其更为广泛的科学应用。本数据集基于来自SCIAMACHY、GOSAT 和 OCO-2 三颗卫星/传感器的XCO2观测数据进行二次研发,以卫星XCO2观测数据为训练标签,与 CO₂ 排放、吸收和传输相关的多源因素为解释变量,利用整合了U-Net网络和ConvLSTM网络的深度学习算法构建预测模型,生成了国际首套2003-2023年全球时空连续1公里分辨率逐日XCO2数据集。经全球27个TCCON地面观测站点的验证,结果表明该产品具有较好的精度(决定系数R2为0.989,均方根误差RMSE为1.021ppm)。本数据集为深化对全球碳循环的理解、评估减排政策以及应对气候变化挑战提供了重要的基础数据。
国家青藏高原科学数据中心 收录
