five

Wildland-urban interface maps for the conterminous U.S. based on 125 million building locations|荒野-城市交界区数据集|地理信息系统数据集

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
荒野-城市交界区
地理信息系统
下载链接:
https://www.sciencebase.gov/catalog/item/617bfb43d34ea58c3c70038f
下载链接
链接失效反馈
资源简介:
The wildland-urban interface (WUI) is the area where urban development occurs in close proximity to wildland vegetation. WUI maps for the conterminous U.S. were generated using building point locations, offering higher spatial resolution compared to previously developed WUI maps based on U.S. Census Bureau housing density data (Radeloff et al., 2017). Building point locations were obtained from a Microsoft product released in 2018, which classified building footprints based on high-resolution satellite imagery. Maps were also based on wildland vegetation mapped by the 2016 National Land Cover Dataset (Yang et al., 2018). The mapping algorithm utilized definitions of the WUI from the U.S. Federal Register (USDA & USDI, 2001) and Radeloff et al. (2005). According to these definitions, two classes of WUI were identified: 1) the intermix, where there is at least 50% vegetation cover surrounding buildings, and 2) the interface, where buildings are within 2.4 km of a patch of vegetation at least 5 km2 in size that contains at least 75% vegetation. Both classes required a minimum building density of 6.17 buildings per km2. Maps of intermix and interface WUI were generated using a range of circular neighborhood sizes, based on radius distances from 100 ? 1,500 m, to determine building density and vegetation cover on a pixel-by-pixel basis (Bar Massada et al., 2013). A composite map was also generated by combining the combined WUI maps (both interface and intermix WUI) for all neighborhood sizes, with field values indicating the radius distances for which pixels are included in the WUI classification. Intermix and interface WUI map rasters based on the six distinct neighborhood sizes, as well as the combined WUI composite map, are included in the compressed .zip files. References: Bar Massada, A., S.I. Stewart, R.B. Hammer, M.H. Mockrin, and V.C. Radeloff. 2013. Using structure locations as a basis for mapping the wildland urban interface. Journal of Environmental Management 128:540?547. Radeloff, V. C., R. B. Hammer, S. I. Stewart, J. S. Fried, S. S. Holcomb, and J. F. McKeefry. 2005. The wildland-urban interface in the United States. Ecological Applications 15:799- 805. Radeloff, V. C., D.P. Helmers, H.A. Kramer, M.H. Mockrin, P.M. Alexandre, A. Bar Massada, V. Butsic, T.J. Hawbaker, S. Martinuzzi, A.D. Syphard, and S.I. Stewart. 2017. The 1990-2010 wildland-urban interface of the conterminous United States (2nd ed.) [Geospatial data]. Forest Service Research Data Archive; https://doi.org/10.2737/RDS-2015-0012-2. USDA and USDI. 2001. Urban wildland interface communities within vicinity of Federal lands that are at high risk from wildfire. Federal Register 66:751-777. Yang, L., S. Jin, P. Danielson, C. Homer, L. Gass, S.M. Bender, A. Case, C. Costello, J. Dewitz, J. Fry, M. Funk, B. Granneman, G.C. Liknes, M. Rigge, and G. Xian. 2018. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing 146:108?123.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

Beijing Traffic

The Beijing Traffic Dataset collects traffic speeds at 5-minute granularity for 3126 roadway segments in Beijing between 2022/05/12 and 2022/07/25.

Papers with Code 收录