山海天最美退役军人提名信息|退役军人数据集|荣誉评选数据集
收藏China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
ShapeNet
ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。
OpenDataLab 收录
BDD100K
数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。
OpenDataLab 收录
