five

Fluctuating starvation conditions modify host-symbiont relationship between a leaf beetle and its newly identified gregarine species|生态学数据集|寄生虫学数据集

收藏
Mendeley Data2024-04-13 更新2024-06-28 收录
生态学
寄生虫学
下载链接:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.fxpnvx0tk
下载链接
链接失效反馈
资源简介:
Study Organism and Rearing The leaf beetle P. cochleariae was reared for several generations at 20 °C, 16 h: 8 h light:dark, 70% r.h. in a climate cabinet and once a year crossed with field-collected beetles (51°51′21″ N, 8°41′37″ E). Groups of about 150 individuals were kept together in plastic rearing boxes (20 x 20 x 6.5 cm) with gauze lids. As food and for oviposition, leaves of Chinese cabbage (Brassica rapa spp. pekinensis) were provided. The plants were grown in a greenhouse (20˚C, 16 h: 8 h light:dark, 70% r.h.) and only 7-10 weeks old non-flowering plants were used. Experimental Set-up to Test Effects of Gregarine and Fluctuating Starvation on Life-History Traits of Beetles To test consequences of a gregarine on its host under different environmental conditions, a full-factorial set-up was used with gregarines (G-, G+) and fluctuating starvation (S-, S+) as treatments, resulting in four treatment groups (G-S-, G-S+, G+S-, G+S+) with 67 – 70 replicates per group. For the experiment, cabbage leaves were offered for 24 h to the beetles in one rearing box. Then, eggs were randomly collected from these leaves. For gregarine infection we followed a protocol developed previously in our group (Wolz et al., 2022). Each egg was carefully cleaned from faecal residues and female secretions with a moist brush. Eggs were then randomly distributed to one of two gregarine treatment groups (uninfected and infected), kept each in a rearing box with fresh cabbage leaves. Shortly before larval hatching (after 6 d), individuals of the uninfected (G-) treatment group received cabbage leaves that had been mechanically damaged by knife cuttings (to provide leaves of comparable quality between treatment groups) and left for 48 h in a rearing box without any insects. Individuals of the gregarine-infected treatment (G+) group received cabbage leaves, which had served as food in rearing boxes with beetles for 48 h and were contaminated with faeces from gregarine-infected conspecifics. Faecal residues contain oocysts with infectious sporozoites, which are ingested by the larvae and cause gregarine infection. Larvae of the two gregarine treatment groups received the respective food, which was replaced every 24 h, for three days. On the fourth day after larval hatching, all individuals received untreated cabbage leaves, which were replaced every 48 h, until the end of the experiment (except during starvation periods). Within both gregarine treatment groups (G- and G+), larvae were subdivided into groups of five in Petri dishes (9 cm diameter) lined with filter paper. Half of the individuals of each of the gregarine treatment groups were fed ad libitum and assigned to the non-starvation treatment group (S-), the other half were starved three times (starvation group, S+), each time for a period of 24 h (d4, d7 and d11 after larval hatching), as similarly performed in an earlier study with sawfly larvae (Paul et al., 2019). In the field, larvae may experience repeated bouts of starvation when their host plants are over-exploited by high population densities. To prevent any potential cannibalism and to keep up humidity, small moistened paper balls were added to the Petri dishes during the starvation periods, providing hiding places. However, cannibalism never occurred in this or former experiments with this species. To investigate the impact of this fluctuating starvation treatment and larval body mass on the number of gregarines, one larva was taken from each Petri dish on d13 after larval hatching (n = 13 per group; for gregarine counting see below). Remaining larvae that pupated were placed individually into Petri dishes (5 cm diameter) lined with filter paper. The day of adult eclosion was noted to determine the development time from larval hatch to reaching adulthood in dependence of the treatments. Two days after adult hatching, the beetles were sexed, weighed (micro balance, ME36S, Sartorius AG, Göttingen, Germany) and adult biomass used as further life-history parameter. Pairs of one male and one female were set up for mating within each treatment group (mating pairs: G-S-: n = 31, G-S+: n = 20, G+S-: n = 20, G+S+: n = 10). The pairs remained together until the seventh day after adult hatching, after which the males were removed. The females were weighed again and the number of eggs laid was counted for each female for four consecutive days (from day 7-10 after adult hatching) as measure of fecundity. From larval hatching until the seventh day of adulthood, the number of individuals that had died were monitored daily to calculate the probability of survival. As the sex of larvae cannot be determined, these data were not separated by sex. The adults can usually live up to three months under laboratory conditions. Counting Total Number of Gregarines in Hosts of the Different Treatments Larvae taken for gregarine counting (see above) were weighed and frozen at -20 °C (14 replicates per treatment group). To determine the total number of gregarines (only trophozoite stage) in the gut, the larvae were dissected, and their guts spread in sodium phosphate buffer (0.1 M, pH = 7.2) on microscope slides. The trophozoites were counted at 200 to 400 times magnification (ZEISS Axiophot). Statistical Analyses The statistical processing and visualisation of the data were performed with R (version 3.6.3, R Core Team, 2020) in RStudio (version 1.2.5033, RStudio Team, 2019). Model residuals were tested for normality and variance homogeneity and stepwise backwards deletion of non-significant interaction terms and predictors (F test or Chisq test) was computed to obtain the minimum adequate models (package: MASS; Venables and Ripley, 2002). In the results section, only the statistical values of the predictors that remained in the final models are reported. The effects of gregarine treatment, starvation treatment and their interaction on development time and number of eggs laid by females were tested using generalised linear models [GLMs: poisson distribution and identity link function (development time) or link log function (egg number)]. Treatment effects on the body mass of adult beetles were analysed separately for males and females by linear models (LMs: Gaussian distribution, identity link function). The treatment effects on survival data were analysed by a stratified cox model to control for proportional hazard assumption (package: survival, Therneau, 2020). The effects of starvation treatment, insect body mass and their interaction on the number of gregarines were tested using a GLM (poisson distribution, identity link function).
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

EcoInvent

EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。

www.ecoinvent.org 收录

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

ADE20K

ADE20K 数据集包含 Scene Parsing Benchmark 场景数据和部分分割数据。图像和注释:每个文件夹包含按场景类别分类的图像,对象和部分分割分别存储在两个不同的 png 文件中。所有对象和零件实例均已单独注释。

OpenDataLab 收录

neuralcatcher/hateful_memes

The Hateful Memes Challenge数据集由Facebook AI创建,专注于检测多模态表情包中的仇恨言论,旨在推动和衡量多模态推理和理解方面的进展。数据集包含多种类型的训练和测试数据,每个示例包含文本、图像路径和标签,评估使用AUROC指标。

hugging_face 收录