five

Can growth mindset interventions improve academic achievement?|教育干预数据集|学术成就数据集

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
教育干预
学术成就
下载链接:
https://data.mendeley.com/datasets/6h6c3b57mj
下载链接
链接失效反馈
资源简介:
Encouraging the idea of a growth mindset in which students believe that they can improve their ability, as opposed to a fixed mindset, has been suggested as an effective and relatively cheap approach to improving student attainment at school. This paper offers a comprehensive review of the evidence from growth mindset interventions. After a rigorous search, screening, and evaluation, the inclusion criteria led to 24 studies. All were randomised control trials (RCTs) focused on growth mindset of intelligence interventions for school-age children, and included output measures for academic performance assessment. Their findings reveal that the strongest studies, characterised by larger sample sizes, minimal missing data, and high data quality, exhibit null or very small effect sizes, ranging from Cohen's d = -0.008 to +0.054. Additionally, certain findings raise concerns about a potential conflict-of-interest bias, suggesting that some negative or null results may remain unpublished. The review identifies three evaluations with a high degree of trustworthiness and with no conflict of interest. Among these, two studies indicate no discernible impact, while one shows a small impact. Given these findings, it is not advisable for schools, school districts, or governments to allocate significant time or resources to the implementation of growth mindset interventions, as the anticipated outcomes are likely to be either null or very modest. However, if there is an opportunity to implement such interventions at a minimal or negligible cost, or as part of another objective, it might be reasonable to proceed with them, considering the potential for a small positive impact.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

SAVEE

SAVEE(Surrey Audio-Visual Expressed Emotion)数据集包含480个音频和视频文件,由4名男性英语母语者在7种不同的情绪状态下录制。这些情绪包括愤怒、高兴、悲伤、惊讶、恐惧、厌恶和中性。每个文件的时长约为3秒,总时长约为24分钟。该数据集主要用于情感识别研究。

kahlan.eps.surrey.ac.uk 收录

YouTube-English

该数据集包含从各种YouTube频道提取的英语音频片段以及相应的转录元数据。数据用于训练自动语音识别(ASR)模型。数据来源于YouTube频道,处理过程包括下载、分割和保存音频及元数据。数据集总结部分详细列出了每个频道的视频数量、持续时间和占总数据集的百分比。

huggingface 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

UIEB, U45, LSUI

本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。

github 收录