five

Can growth mindset interventions improve academic achievement?|教育干预数据集|学术成就数据集

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
教育干预
学术成就
下载链接:
https://data.mendeley.com/datasets/6h6c3b57mj
下载链接
链接失效反馈
资源简介:
Encouraging the idea of a growth mindset in which students believe that they can improve their ability, as opposed to a fixed mindset, has been suggested as an effective and relatively cheap approach to improving student attainment at school. This paper offers a comprehensive review of the evidence from growth mindset interventions. After a rigorous search, screening, and evaluation, the inclusion criteria led to 24 studies. All were randomised control trials (RCTs) focused on growth mindset of intelligence interventions for school-age children, and included output measures for academic performance assessment. Their findings reveal that the strongest studies, characterised by larger sample sizes, minimal missing data, and high data quality, exhibit null or very small effect sizes, ranging from Cohen's d = -0.008 to +0.054. Additionally, certain findings raise concerns about a potential conflict-of-interest bias, suggesting that some negative or null results may remain unpublished. The review identifies three evaluations with a high degree of trustworthiness and with no conflict of interest. Among these, two studies indicate no discernible impact, while one shows a small impact. Given these findings, it is not advisable for schools, school districts, or governments to allocate significant time or resources to the implementation of growth mindset interventions, as the anticipated outcomes are likely to be either null or very modest. However, if there is an opportunity to implement such interventions at a minimal or negligible cost, or as part of another objective, it might be reasonable to proceed with them, considering the potential for a small positive impact.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

MVIP

MVIP是一个面向应用的多视角和多模态工业零件识别数据集,由弗劳恩霍夫IPK研究所创建。该数据集包含了校准过的RGBD多视角图像以及对象的物理属性、自然语言描述和超类别等信息。数据集共包含约570,000张图像,分为训练集、验证集和测试集,适用于工业零件识别相关的研究,旨在解决小样本学习、视觉相似零件识别等问题。

arXiv 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录