five

Setup of a 3D printed wind tunnel: application for calibrating bi-directional velocity probes used in Fire Engineering Applications|3D打印数据集|火灾工程数据集

收藏
Mendeley Data2024-03-27 更新2024-06-28 收录
3D打印
火灾工程
下载链接:
https://data.mendeley.com/datasets/w3jkrw2ct8
下载链接
链接失效反馈
资源简介:
The research presented here focuses on the development of a 3D printed wind tunnel and the relevant equipment to be used for calibrating bi-directional velocity probes (BDVP). BDVP are equipment to be used for measuring velocity flow by determining the pressure difference of hot gases generated during fires. The manufactured probes require calibration to determine the calibration factor to achieve precise measurement. The calibration is usually performed in wind tunnels which can be difficult to access due to costs, complexity and the various pieces of equipment required. The aim of the current study is to develop and assemble an inexpensive and easy-to-build bench-scale wind tunnel, with a data-logging system and fan control functionalities for fast and effective calibration of BDVP. A 3D printer with a PET-G filament is used, able to produce parts for the wind tunnel system which are durable and easy to handle and assemble. The system additionally includes an Arduino-based measuring unit with a hot-wire anemometer and temperature correction: Rev. P. This takes precise measurements; continuously logging data on a computer through a USB interface and capable of saving data on an SD card. This design provides users with parameters of velocity flow up to 4 m/s with standard deviation of 1.2 % and turbulence intensity of 1 %. The main advantages of this wind tunnel are its simplicity to build and portability. The dataset contains design files for 3d printing of the wind tunnel, BOM and wiring of electronic components. The project is prototype under development and authors are not responsible for any damages or injuries caused by inappropriate construction or operation. This source is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

stanford_cars

该数据集是一个包含多个汽车品牌和型号的图片数据集,每个图片样本都标记有相应的汽车品牌和型号信息。数据集适用于图像识别和分类任务,特别是汽车品牌和型号的识别。

huggingface 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

EcoInvent

EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。

www.ecoinvent.org 收录