visual-search-nets|视觉搜索数据集|神经网络数据集
收藏CE-CSL
CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。
arXiv 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
FACED
FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。
arXiv 收录
SMSSpamCollection
该数据集包含数千条标记为spam或ham(非垃圾邮件)的短信。它反映了日常通信的典型情况,并包含常见的垃圾邮件词汇,为评估文本分类模型提供了现实基础。
github 收录
航空发动机叶片异常检测数据集 (AeBAD)
航空发动机叶片异常检测数据集(AeBAD)由西安交通大学机械工程学院创建,包含两个子数据集:单叶片数据集(AeBAD-S)和叶片视频异常检测数据集(AeBAD-V)。AeBAD-S包含不同尺度的单叶片图像,样本未对齐,存在训练集与测试集间的域转移问题,主要由光照和视角变化引起。AeBAD-V包含安装在航空发动机上的叶片视频,用于检测叶片在旋转过程中的异常。该数据集旨在解决实际工业应用中叶片异常检测的问题,强调同一数据类别内的域多样性。
arXiv 收录
