five

allenai/ropes|自然语言处理数据集|推理能力数据集

收藏
hugging_face2024-01-04 更新2024-03-04 收录
自然语言处理
推理能力
下载链接:
https://hf-mirror.com/datasets/allenai/ropes
下载链接
链接失效反馈
资源简介:
ROPES(Reasoning Over Paragraph Effects in Situations)是一个问答数据集,旨在测试系统将文本段落中的知识应用于新情境的能力。该数据集要求理解背景段落中的因果或定性关系,并通过多跳推理回答与情境相关的问题。数据集包含英语文本,主要来源于科学教科书和维基百科,通过众包方式进行标注,并根据CC-BY-4.0许可发布。
提供机构:
allenai
原始信息汇总

数据集概述

数据集名称

  • 名称: ROPES
  • 别名: Reasoning Over Paragraph Effects in Situations

数据集描述

  • 语言: 英语 (en)
  • 许可证: CC BY 4.0
  • 多语言性: 单语种
  • 大小: 10K<n<100K
  • 源数据: 扩展自Wikipedia,原始数据
  • 任务类别: 问答 (extractive-qa)
  • 数据集ID: ropes

数据集结构

  • 数据实例: 遵循SQuAD v1.1格式,包含ID、背景、情境、问题和答案。
  • 数据字段:
    • id: 识别码
    • background: 背景段落
    • situation: 情境描述
    • question: 问题
    • answers: 答案文本,通常为情境或问题的片段

数据集创建

  • 数据收集: 自动从科学教科书和Wikipedia收集包含因果关系的段落。
  • 注释过程: 通过Amazon Mechanical Turk进行,注释者根据背景段落创建情境和问题。

数据集使用注意事项

  • 许可证: 使用数据集需遵守CC BY 4.0许可。
  • 引用信息: 引用时需使用提供的引用格式。
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

Asteroids by the Minor Planet Center

包含所有已知小行星的轨道数据和观测数据。数据来源于Minor Planet Center,格式包括Fortran (.DAT)和JSON,数据集大小为81MB(压缩)和450MB(未压缩),记录数约750,000条,每日更新。

github 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Infrared Thermal Image Dataset of High Voltage Electrical Power Equipment under Different Operating Conditions

Recognizing high voltage power equipment in electrical substations is the fundamental platform for effective condition monitoring of electrical power system. It enables proper identification and analysis of anomalies within the equipment, especially when in operation. The result such investigation can be applied for effective real-time measurement, control and protection schemes in the network. The use of visual images for this purpose would be limited during poor lighting conditions. However, Infrared (IR) images of the equipment are invariant to poor illumination condition. Hence, we have acquired the thermographic images of the high voltage power equipment using the portable professional FLIR C5 Infrared camera at different times of the day and load conditions. The dataset contains 5 categories of high voltages equipment common to most air-insulated electrical power substation at 132kV level, namely: circuit breakers, power transformers, surge arresters, disconnectors, and wave traps. The number of IR images for each class of equipment are: circuit breakers 203, power transformers 178, surge arresters 181, disconnectors 180, and wave traps 153. The IR images are 640 x 480 pixel RGB images captured using the rainbow color palette and properly segmented in labeled folders. The color bar in each IR image identifies the thermal range used during its acquisition. The dataset can be used for implementing novel research in computer vision based deep learning models, especially in object recognition, identification, fault classification or detection algorithms. The thermal profile of the equipment in the dataset could be applied for detection of hotspots and other related anomalies.

DataCite Commons 收录