Creative Foraging Game Data (0.9)|探索与发现数据集|实验范式数据集
收藏MMOral
MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。
arXiv 收录
Textile-AD-dataset
Textile AD Dataset是为纺织品表面缺陷检测设计的数据集,包含三种不同纹理类型的纺织品。数据集共有3975张正常图像和246张异常图像,其中3295张正常图像和所有246张异常图像用于测试,模拟了实际工业场景中的数据分布。
github 收录
GLUCOBENCH
GLUCOBENCH是由德克萨斯A&M大学统计系和电气与计算机工程系共同创建的一个综合数据集,旨在为连续血糖监测(CGM)数据的预测模型提供标准化的评估平台。该数据集包含五个公开的CGM数据集,涵盖不同规模和人口特征,数据量从5个到超过200个患者不等。数据集的创建过程包括数据预处理、插值和分割,确保数据质量。GLUCOBENCH主要应用于糖尿病管理领域,旨在通过提高血糖轨迹预测的准确性和不确定性量化,改善糖尿病患者的治疗效果和自主管理能力。
arXiv 收录
TCM-Tongue
TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。
arXiv 收录
Stanford Cars
Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。
OpenDataLab 收录
