five

Data from: Size structuring and allometric scaling relationships in coral reef fishes|珊瑚礁生态数据集|鱼类生态学数据集

收藏
DataONE2017-01-19 更新2024-06-26 收录
珊瑚礁生态
鱼类生态学
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Temperate marine fish communities are often size structured, with predators consuming increasingly larger prey and feeding at higher trophic levels as they grow. Gape limitation and ontogenetic diet shifts are key mechanisms by which size structuring arises in these communities. Little is known, however, about size structuring in coral reef fishes. Here, we aimed to advance understanding of size structuring in coral reef food webs by examining the evidence for these mechanisms in two groups of reef predators. Given the diversity of feeding modes amongst coral reef fishes, we also compared gape size—body size allometric relationships across functional groups to determine if they are reliable indicators of size structuring. We used gut content analysis and quantile regressions of predator size—prey size relationships to test for evidence of gape limitation and ontogenetic niche shifts in reef piscivores (n=13 species) and benthic invertivores (n=3 species). We then estimated gape size—body size allometric scaling coefficients for 21 different species from four functional groups, including herbivores/detritivores, which are not expected to be gape-limited. We found evidence of both mechanisms for size structuring in coral reef piscivores, with maximum prey size scaling positively with predator body size, and ontogenetic diet shifts including prey type and expansion of prey size. There was, however, little evidence of size structuring in benthic invertivores. Across species and functional groups, absolute and relative gape sizes were largest in piscivores as expected, but gape size—body size scaling relationships were not indicative of size structuring. Instead, relative gape sizes and mouth morphologies may be better indicators. Our results provide evidence that coral reef piscivores are size-structured, and that gape limitation and ontogenetic niche shifts are the mechanisms from which this structure arises. Although gape allometry was not indicative of size structuring, it may have implications for ecosystem function: positively allometric gape size—body size scaling relationships in herbivores/detritivores suggests that loss of large-bodied individuals of these species will have a disproportionately negative impact on reef grazing pressure.
创建时间:
2017-01-19
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录

Textile-AD-dataset

Textile AD Dataset是为纺织品表面缺陷检测设计的数据集,包含三种不同纹理类型的纺织品。数据集共有3975张正常图像和246张异常图像,其中3295张正常图像和所有246张异常图像用于测试,模拟了实际工业场景中的数据分布。

github 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录