five

Data for: First Line Antimicrobials in Children With Complicated Severe Acute Malnutrition (FLACSAM)|临床试验数据集|儿童健康数据集

收藏
DataONE2021-11-24 更新2024-06-08 收录
临床试验
儿童健康
下载链接:
https://search.dataone.org/view/sha256:ae797f4fe90fef98ca44097a83cfe6493d76690ad50dc8f0e74d6508b7d53953
下载链接
链接失效反馈
资源简介:
This dataset contains FLACSAM Trial Protocol and Statistical Analysis Plan (SAP). The study was a multi-site longitudinal trial that involved 4 sites in 2 countries. During the study, participant demographic, clinical, social, and laboratory data was collected at various timepoints depending on a predetermined study activity schedule. The trial is registered in ClinicalTrials.gov, NCT03174236
创建时间:
2023-11-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

医院等级评审管理系统

医院等级评审管理系统

南京数据交易平台 收录

中国30m土地利用数据集(1990-2020年)

数据以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的中国国家尺度多时期土地利用/土地覆盖专题数据库数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型

国家地球系统科学数据中心 收录

fruits_weight

该数据集用于训练和改进YOLOv8-seg模型,用于水果成熟度的识别与分割。数据集包含12个类别,涵盖了从生鲜水果到成熟水果的不同阶段,具体类别包括:生芒果(Raw_Mango)、熟芒果(Ripe_Mango)、熟葡萄(ripe grape)、熟苹果(ripe_apple)、熟橙子(ripe_orange)、熟石榴(ripe_pomegranate)、半熟葡萄(semiripe grape)、半熟苹果(semiripe_apple)、未熟葡萄(unripe grape)、未熟苹果(unripe_apple)、未熟橙子(unripe_orange)和未熟石榴(unripe_pomegranate)。数据集的丰富性和多样性使其成为训练水果成熟度识别模型的理想选择。

github 收录