five

Partial Shading and Fault Simulation Dataset of Photovoltaics Module|太阳能电池数据集|无人机技术数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
太阳能电池
无人机技术
下载链接:
https://ieee-dataport.org/documents/partial-shading-and-fault-simulation-dataset-photovoltaics-module
下载链接
链接失效反馈
资源简介:
According to recent statistics released by the California Department of Forestry and Fire Protection (CAL FIRE), in the year 2020, 8112 fire incidents were reported, resulting in damaging approximately 1.4 million acres of land in California [1]. These frequent forest fires result in damaging the economy, environment, flora, and fauna of the affected area. Due to forest fire’s vast impact, many techniques are developed for detecting forest fire [2]–[4]. Compared to all the techniques, drones-based forest fire detection, search, and rescue have garnered much interest among researchers due to their ability to cover a vast area, ease of use, and ability to support different kinds of sensors [5]–[7]. For drones to be effective, they need to have a prolonged flight time and be rugged to operate in hazardous conditions. According to[8], for powering a drone, gallium-basedmultijunction solar cells are the most efficient since they provide the best power-to-weight ratio. Additionally, it is shown in [9]that transistor-embedded solar cells can create a smarter and more resilient power source. Recently, Sood et al. published a paper showing the effectiveness of Machine Learning in identifying the number of solar cells in the panel under shade [10]. However, besides partial shading, there are other types of aberrations that a solar powered micro-autonomous drone needs to consider while operating in harsh environments. In severe operating conditions, physical damage to solar cells in the panel, open/short circuit fault, and other kinds of faults can make the micro-autonomous drone nonfunctional. The dataset presented is an extension of the research work presented in [10], where silicon-based solar cells are used which have a lower efficiency for powering drones. The dataset presented, uses an equivalent circuit model to simulate gallium-based multijunction solar cell performance in different shading and faulty conditions at different temperatures. The raw dataset is generated using a combination of LTSPICE and Python. References[1] “Welcome to Stats & Events.” https://www.fire.ca.gov/stats-events/ (accessed Dec. 30, 2020).[2] M. Naderpour, H. M. Rizeei, N. Khakzad, and B. Pradhan, “Forest fire induced Natech risk assessment: A survey of geospatial technologies,” Reliab. Eng. Syst. Saf., vol. 191, p. 106558, Nov. 2019, doi: 10.1016/j.ress.2019.106558.[3] A. A. A. Alkhatib, “A Review on Forest Fire Detection Techniques,” Int. J. Distrib. Sens. Netw., vol. 10, no. 3, p. 597368, Mar. 2014, doi: 10.1155/2014/597368.[4] V. Chowdary and M. K. Gupta, “Automatic Forest Fire Detection and Monitoring Techniques: A Survey,” in Intelligent Communication, Control and Devices, Singapore, 2018, pp. 1111–1117. doi: 10.1007/978-981-10-5903-2_116.[5] D. Kinaneva, G. Hristov, J. Raychev, and P. Zahariev, “Early forest fire detection using drones and artificial intelligence,” in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 1060–1065.[6] J. Paneque-Gálvez, M. K. McCall, B. M. Napoletano, S. A. Wich, and L. P. Koh, “Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas,” Forests, vol. 5, no. 6, pp. 1481–1507, 2014.[7] C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Can. J. For. Res., vol. 45, no. 7, pp. 783–792, 2015.[8] L. F. Lester et al., “Flexible solar cells for micro-autonomous systems technology,” in Micro-and Nanotechnology Sensors, Systems, and Applications II, 2010, vol. 7679, p. 76790Y.[9] R. Mahto, “Fault resilient and reconfigurable power management using photovoltaic integrated with CMOS switches,” 2016.[10] K. Sood, R. Mahto, H. Shah, and A. Murrel, “Power Management of Autonomous Drones using Machine Learning,” presented at the IEEE SusTech, Long Beach, CA, Apr. 2021.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Amazon电影评论数据集

该数据集包含从1997年8月至2012年10月期间,Amazon用户对253,059种产品的7,911,684条评论。数据集被添加了真实标签,这些标签是通过爬取/抓取Amazon.com获得的,用于分类产品。

github 收录

美团数据采集

查询店铺商品管理、门店管理、美团收单、门店资质、订单管理、顾客评价、财务管理等数据等数据

湖北省公共数据授权运营平台 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录

CMU-MOSI

CMU-MOSI数据集包括了从93个YouTube的视频中获取的2199个独白类型的短视频片段。每个片段都是一个独立的多模态示例,其中图像、文本和音频占比是均匀的,情感分数取值为[-3,+3],表示从强负向到强正向情感。

DataCite Commons 收录

ELSA

ELSA(English Longitudinal Study of Ageing)是一个纵向研究项目,旨在调查英国50岁及以上人群的健康、经济状况和社会关系。数据集包括参与者的健康状况、生活方式、经济状况、社会网络等多方面的信息。

www.elsa-project.ac.uk 收录