five

Partial Shading and Fault Simulation Dataset of Photovoltaics Module|太阳能电池数据集|无人机技术数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
太阳能电池
无人机技术
下载链接:
https://ieee-dataport.org/documents/partial-shading-and-fault-simulation-dataset-photovoltaics-module
下载链接
链接失效反馈
资源简介:
According to recent statistics released by the California Department of Forestry and Fire Protection (CAL FIRE), in the year 2020, 8112 fire incidents were reported, resulting in damaging approximately 1.4 million acres of land in California [1]. These frequent forest fires result in damaging the economy, environment, flora, and fauna of the affected area. Due to forest fire’s vast impact, many techniques are developed for detecting forest fire [2]–[4]. Compared to all the techniques, drones-based forest fire detection, search, and rescue have garnered much interest among researchers due to their ability to cover a vast area, ease of use, and ability to support different kinds of sensors [5]–[7]. For drones to be effective, they need to have a prolonged flight time and be rugged to operate in hazardous conditions. According to[8], for powering a drone, gallium-basedmultijunction solar cells are the most efficient since they provide the best power-to-weight ratio. Additionally, it is shown in [9]that transistor-embedded solar cells can create a smarter and more resilient power source. Recently, Sood et al. published a paper showing the effectiveness of Machine Learning in identifying the number of solar cells in the panel under shade [10]. However, besides partial shading, there are other types of aberrations that a solar powered micro-autonomous drone needs to consider while operating in harsh environments. In severe operating conditions, physical damage to solar cells in the panel, open/short circuit fault, and other kinds of faults can make the micro-autonomous drone nonfunctional. The dataset presented is an extension of the research work presented in [10], where silicon-based solar cells are used which have a lower efficiency for powering drones. The dataset presented, uses an equivalent circuit model to simulate gallium-based multijunction solar cell performance in different shading and faulty conditions at different temperatures. The raw dataset is generated using a combination of LTSPICE and Python. References[1] “Welcome to Stats & Events.” https://www.fire.ca.gov/stats-events/ (accessed Dec. 30, 2020).[2] M. Naderpour, H. M. Rizeei, N. Khakzad, and B. Pradhan, “Forest fire induced Natech risk assessment: A survey of geospatial technologies,” Reliab. Eng. Syst. Saf., vol. 191, p. 106558, Nov. 2019, doi: 10.1016/j.ress.2019.106558.[3] A. A. A. Alkhatib, “A Review on Forest Fire Detection Techniques,” Int. J. Distrib. Sens. Netw., vol. 10, no. 3, p. 597368, Mar. 2014, doi: 10.1155/2014/597368.[4] V. Chowdary and M. K. Gupta, “Automatic Forest Fire Detection and Monitoring Techniques: A Survey,” in Intelligent Communication, Control and Devices, Singapore, 2018, pp. 1111–1117. doi: 10.1007/978-981-10-5903-2_116.[5] D. Kinaneva, G. Hristov, J. Raychev, and P. Zahariev, “Early forest fire detection using drones and artificial intelligence,” in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 1060–1065.[6] J. Paneque-Gálvez, M. K. McCall, B. M. Napoletano, S. A. Wich, and L. P. Koh, “Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas,” Forests, vol. 5, no. 6, pp. 1481–1507, 2014.[7] C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Can. J. For. Res., vol. 45, no. 7, pp. 783–792, 2015.[8] L. F. Lester et al., “Flexible solar cells for micro-autonomous systems technology,” in Micro-and Nanotechnology Sensors, Systems, and Applications II, 2010, vol. 7679, p. 76790Y.[9] R. Mahto, “Fault resilient and reconfigurable power management using photovoltaic integrated with CMOS switches,” 2016.[10] K. Sood, R. Mahto, H. Shah, and A. Murrel, “Power Management of Autonomous Drones using Machine Learning,” presented at the IEEE SusTech, Long Beach, CA, Apr. 2021.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录