five

Partial Shading and Fault Simulation Dataset of Photovoltaics Module|太阳能电池数据集|无人机技术数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
太阳能电池
无人机技术
下载链接:
https://ieee-dataport.org/documents/partial-shading-and-fault-simulation-dataset-photovoltaics-module
下载链接
链接失效反馈
资源简介:
According to recent statistics released by the California Department of Forestry and Fire Protection (CAL FIRE), in the year 2020, 8112 fire incidents were reported, resulting in damaging approximately 1.4 million acres of land in California [1]. These frequent forest fires result in damaging the economy, environment, flora, and fauna of the affected area. Due to forest fire’s vast impact, many techniques are developed for detecting forest fire [2]–[4]. Compared to all the techniques, drones-based forest fire detection, search, and rescue have garnered much interest among researchers due to their ability to cover a vast area, ease of use, and ability to support different kinds of sensors [5]–[7]. For drones to be effective, they need to have a prolonged flight time and be rugged to operate in hazardous conditions. According to[8], for powering a drone, gallium-basedmultijunction solar cells are the most efficient since they provide the best power-to-weight ratio. Additionally, it is shown in [9]that transistor-embedded solar cells can create a smarter and more resilient power source. Recently, Sood et al. published a paper showing the effectiveness of Machine Learning in identifying the number of solar cells in the panel under shade [10]. However, besides partial shading, there are other types of aberrations that a solar powered micro-autonomous drone needs to consider while operating in harsh environments. In severe operating conditions, physical damage to solar cells in the panel, open/short circuit fault, and other kinds of faults can make the micro-autonomous drone nonfunctional. The dataset presented is an extension of the research work presented in [10], where silicon-based solar cells are used which have a lower efficiency for powering drones. The dataset presented, uses an equivalent circuit model to simulate gallium-based multijunction solar cell performance in different shading and faulty conditions at different temperatures. The raw dataset is generated using a combination of LTSPICE and Python. References[1] “Welcome to Stats & Events.” https://www.fire.ca.gov/stats-events/ (accessed Dec. 30, 2020).[2] M. Naderpour, H. M. Rizeei, N. Khakzad, and B. Pradhan, “Forest fire induced Natech risk assessment: A survey of geospatial technologies,” Reliab. Eng. Syst. Saf., vol. 191, p. 106558, Nov. 2019, doi: 10.1016/j.ress.2019.106558.[3] A. A. A. Alkhatib, “A Review on Forest Fire Detection Techniques,” Int. J. Distrib. Sens. Netw., vol. 10, no. 3, p. 597368, Mar. 2014, doi: 10.1155/2014/597368.[4] V. Chowdary and M. K. Gupta, “Automatic Forest Fire Detection and Monitoring Techniques: A Survey,” in Intelligent Communication, Control and Devices, Singapore, 2018, pp. 1111–1117. doi: 10.1007/978-981-10-5903-2_116.[5] D. Kinaneva, G. Hristov, J. Raychev, and P. Zahariev, “Early forest fire detection using drones and artificial intelligence,” in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 1060–1065.[6] J. Paneque-Gálvez, M. K. McCall, B. M. Napoletano, S. A. Wich, and L. P. Koh, “Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas,” Forests, vol. 5, no. 6, pp. 1481–1507, 2014.[7] C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Can. J. For. Res., vol. 45, no. 7, pp. 783–792, 2015.[8] L. F. Lester et al., “Flexible solar cells for micro-autonomous systems technology,” in Micro-and Nanotechnology Sensors, Systems, and Applications II, 2010, vol. 7679, p. 76790Y.[9] R. Mahto, “Fault resilient and reconfigurable power management using photovoltaic integrated with CMOS switches,” 2016.[10] K. Sood, R. Mahto, H. Shah, and A. Murrel, “Power Management of Autonomous Drones using Machine Learning,” presented at the IEEE SusTech, Long Beach, CA, Apr. 2021.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

红外谱图数据库

收集整理红外谱图实验手册等数据,建成了红外谱图数据库。本数据库收录了常见化合物的红外谱图。主要包括化合物数据和对应的红外谱图数据。其中,原始红外谱图都进行了数字化处理,从而使谱峰检索成为可能。用户可以在数据库中检索指定化合物的谱图,也可以提交谱图/谱峰数据,以检索与之相似的谱图数据,以协助进行谱图鉴定。

国家基础学科公共科学数据中心 收录

NASA Battery Dataset

用于预测电池健康状态的数据集,由NASA提供。

github 收录

Nexdata/chinese_dialect

该数据集包含25,000小时的中文方言语音数据,收集自多个方言区域的本地方言使用者,涵盖闽南语、粤语、四川话、河南话、东北话、上海话、维吾尔语和藏语等。数据格式为16kHz、16bit、未压缩的wav文件,单声道。句子准确率超过95%。数据集支持的任务包括自动语音识别(ASR)和音频说话人识别。

hugging_face 收录

中国1km分辨率逐月平均气温数据集(1901-2024)

该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录