five

Replication Data for "Best Practices for Your Exploratory Factor Analysis: a Factor Tutorial" published by RAC-Revista de Administração Contemporânea|探索性因子分析数据集|管理学研究数据集

收藏
Mendeley Data2024-03-27 更新2024-06-28 收录
探索性因子分析
管理学研究
下载链接:
https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/RCX8FF
下载链接
链接失效反馈
资源简介:
This repository contains material related to the analysis performed in the article "Best Practices for Your Exploratory Factor Analysis: a Factor Tutorial". The material includes the data used in the analyses in .dat format, the labels (.txt) of the variables used in the Factor software, the outputs (.txt) evaluated in the article, and videos (.mp4 with English subtitles) recorded for the purpose of explaining the article. The videos can also be accessed in the following playlist: https://youtube.com/playlist?list=PLln41V0OsLHbSlYcDszn2PoTSiAwV5Oda. Below is a summary of the article: "Exploratory Factor Analysis (EFA) is one of the statistical methods most widely used in Administration, however, its current practice coexists with rules of thumb and heuristics given half a century ago. The purpose of this article is to present the best practices and recent recommendations for a typical EFA in Administration through a practical solution accessible to researchers. In this sense, in addition to discussing current practices versus recommended practices, a tutorial with real data on Factor is illustrated, a software that is still little known in the Administration area, but freeware, easy to use (point and click) and powerful. The step-by-step illustrated in the article, in addition to the discussions raised and an additional example, is also available in the format of tutorial videos. Through the proposed didactic methodology (article-tutorial + video-tutorial), we encourage researchers/methodologists who have mastered a particular technique to do the same. Specifically, about EFA, we hope that the presentation of the Factor software, as a first solution, can transcend the current outdated rules of thumb and heuristics, by making best practices accessible to Administration researchers". STEPS TO REPRODUCE This repository is composed of four types of files: 1) three video files in .mp4 format (with English subtitles), which discuss the article and the extra example mentioned in it; 2) two databases in .dat format: i) 1047 observations with 24 variables of the WHOQOL instrument discussed in the article; and ii) 918 observations with 10 variables of the FWB scale (extra example); 3) two labels files (.txt format) to be incorporated into the Factor software; and 4) five output files in .txt format. The steps are: 1st: Read the article “Best Practices for Your Exploratory Factor Analysis: a Factor Tutorial”. DOI: 10.1590/1982-7849rac2022210085.en; OR 1st: Watch the videos: i) 1_Video_BestPractices.mp4 (https://youtu.be/ITh1w4tFerA); and ii) 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0); 2nd: Insert the database WHOQOL_Data.dat into the Factor software and, optionally, the label file WHOQOL_Labels.txt, as explained in section 4.2 of the article or in the section that begins at the timestamp 6:35 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=395); 3rd: Configure the analyses as explained in section 4.3 of the article or in the section that begins at the timestamp 10:45 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=645); 4th: Interpret the first output file (1_Output_WHOQOL_4Factors.txt) as explained in section 4.4 of the article or in the section that begins at the timestamp 20:45 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=1245); 5th: Interpret the second output file (2_Output_WHOQOL_2Factors.txt) as explained in the section that starts at the timestamp 49:53 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=2993); 6th: Interpret the third output file (3_Output_WHOQOL_2Factors_Ajusted.txt) as explained in the section that starts at the timestamp 1:05:45 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=3945); and 7th: Interpret the fourth output file (4_Output_WHOQOL_2Factors_Bifactor.txt) as explained in the section that starts at the timestamp 1:13:14 of the video 2_Video_MultidimensionalExample.mp4 (https://youtu.be/9X77ARoyys0?t=4394); OR, optionally, to replicate the extra example mentioned in the article: 8th: Insert the database FWB_Data.dat into the Factor software and, optionally, the label file FWB_Labels.txt, as explained in the section that starts at the timestamp 4:50 of the video 3_Video_UnidimensionalExample.mp4 (https://youtu.be/wFTGJG8XRRs?t=290); 9th: Configure the analyses as explained in the section that starts at the timestamp 8:32 of the video 3_Video_UnidimensionalExample.mp4 (https://youtu.be/wFTGJG8XRRs?t=512); and 10th: Interpret the output file FWB_Output.txt as explained in the section that begins at the timestamp 22:58 of the video 3_Video_UnidimensionalExample.mp4 (https://youtu.be/wFTGJG8XRRs?t=1378).
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

RFUAV

RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。

arXiv 收录