Games I Play|游戏数据集
收藏COD10KD, NC4K-D, CAMO-D
该数据集由华中科技大学的研究团队创建,旨在为现实中的伪装物体检测(RCOD)任务提供基准测试。数据集基于现有的COD10K-v2、NC4K和CAMO数据集,通过手动标注边界框和类别标签,生成了COD10KD、NC4K-D和CAMO-D三个新的数据集。这些数据集包含了伪装物体与其背景高度相似的特征,适用于检测任务的评估。数据集的应用领域主要集中在搜索与救援、军事打击等需要精确定位伪装物体的场景,旨在通过优化检测模型的前景与背景识别能力,提升RCOD任务的性能。
arXiv 收录
RAVDESS
情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。
OpenDataLab 收录
LFW (Labeled Faces in the Wild)
Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。
OpenDataLab 收录
UCF-Crime
UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。
OpenDataLab 收录
Global Urban Boundaries (GUB)
Global Urban Boundaries (GUB) 数据集包含了全球城市边界的详细信息,提供了高分辨率的城市边界数据,用于分析城市化进程和城市扩张。
datacatalog.worldbank.org 收录
