five

Research data on health facility-level factors that contribute to delayed diagnosis of cervical cancer|宫颈癌数据集|诊断延迟数据集

收藏
DataONE2024-05-27 更新2024-06-08 收录
宫颈癌
诊断延迟
下载链接:
https://search.dataone.org/view/sha256:113d5326f9df17b9ee1f3e865ec16ca0a37d45dfc0a922f30b906ecde2011a1a
下载链接
链接失效反馈
资源简介:
In Kenya, cervical cancer is the 2nd commonly diagnosed type of cancer and the top cause of cancer-related deaths among women. Globally, over 50% of cervical cancer diagnoses are made late, with this proportion rising to 80% in developing countries. Poor Health systems can cause delays in diagnosis, thus, this study focused on determining the health facility-level factors that contribute to delayed diagnosis among cervical cancer patients at the Kenyatta National Hospital (KNH). An analytical cross-sectional mixed method study was adopted to collect data on hospital and referral experiences from 139 cervical cancer patients systematically sampled at KNH, using a semi-structured questionnaire. Associations between the stage at diagnosis and hospital and referral experiences were tested using a logistic regression model at 95% Confidence Interval. 86 (61.9%) were diagnosed at advanced stages III and IV. The potential predictors for delayed diagnosis were; More number of hospital referral ..., Systematic sampling was used to select 139 cervical cancer patients diagnosed and receiving treatment at KNH, aged above 18, and diagnosed within the last one year since time of data collection. The study excluded patients whose medical records did not have clear staging information, those diagnosed with other cancer types, those with recurrent cervical cancer, those in palliative care, those with psychotic health issues, and those who were unwilling to participate in the study. The participants were interviewed using a semi-structured questionnaire, with questions regarding their hospital and referral experiences such as type of medical facility they visited first, number of hospitals visits they made before diagnosis, if they were referred to KNH, number of referral times, referral challenges they faced, and period taken to get diagnosis appointments and results. The key outcome of delayed diagnosis was stage at diagnosis, categorized as either; early (stages IA to IIB) or delayed (II..., , # Research data on Health Facility-Level Factors that Contribute to Delayed Diagnosis of Cervical Cancer [https://doi.org/10.5061/dryad.dz08kps5m](https://doi.org/10.5061/dryad.dz08kps5m) ## Description of the data and file structure The data consists of 20 variables.  It is structured starting with socio-demographics, dependent variable, and then health facility-related variables.  The data was coded before analysis on Stata. The data also consists of qualitative data on the last two variables, as answered by the participants. Early diagnosis was defined to be stages IA to IIB and decoded as 0. In contrast, the Delayed diagnosis was defined as from stage IIIA  to IVB and was coded as 1 to allow for logistic regression analysis.  The variables were coded as follows; ``` Code Variable Condition Age in years Required 1 <40 2 40-49 3 50-59 4 60-69 5 70 and above Employment Status Required 1 Employed 2 Not employed First Medical Care visit Required 1 Private 2 Public ...
创建时间:
2025-07-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录