five

Unidentified building in the mountains, [s.d.]

收藏
Mendeley Data2024-01-31 更新2024-06-29 收录
下载链接:
https://digitallibrary.usc.edu/asset-management/2A3BF1AW5CH
下载链接
链接失效反馈
资源简介:
Photograph of an unidentified building in the mountains, [s.d.]. The large, light-colored building can be seen in the background at center. It is very tall, and has a gaping hole at center where a door is visible. Stone steps lead up to the building, and a dirt path is visible in the foreground at center. Trees and bushes line both sides of the path. In the background, the top of a ridge is visible behind the building.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

DIV2K

displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录