five

DFKI-SLT/tacred|关系抽取数据集|知识库构建数据集

收藏
hugging_face2024-05-15 更新2024-03-04 收录
关系抽取
知识库构建
下载链接:
https://hf-mirror.com/datasets/DFKI-SLT/tacred
下载链接
链接失效反馈
资源简介:
The TAC Relation Extraction Dataset (TACRED)是一个大规模的关系抽取数据集,包含106,264个示例,这些示例构建在新聞稿和网络文本上,源自年度TAC知识库填充(TAC KBP)挑战的语料库。TACRED涵盖了TAC KBP挑战中使用的41种关系类型(例如per:schools_attended和org:members),如果未定义关系,则标记为no_relation。这些示例是通过结合TAC KBP挑战中可用的人工标注和众包创建的。
提供机构:
DFKI-SLT
原始信息汇总

数据集概述

数据集名称

  • 名称: The TAC Relation Extraction Dataset, TACRED Revisited and Re-TACRED
  • 别名: tacred

数据集基本信息

  • 语言: 英语
  • 许可证: 其他
  • 多语言性: 单语
  • 大小类别: 100K<n<1M
  • 源数据集: 扩展自其他数据集
  • 标签创建者: 众包和专家生成
  • 任务类别: 文本分类
  • 任务ID: 多类分类

数据集详细描述

  • 概述: TACRED是一个大规模的关系抽取数据集,包含106,264个例子,构建于TAC知识库填充挑战所使用的年份新闻和网络文本之上。数据集涵盖41种关系类型,或标记为no_relation。
  • 版本: 数据集提供三个版本:原始版本、TACRED Revisited和Re-TACRED。

数据集结构

  • 数据实例: 每个实例包括多个字段,如ID、文档ID、关系标签、实体位置等。
  • 数据字段: 包括id、docid、token、relation等,详细描述了文本的结构和内容。
  • 数据分割: 数据集根据TAC KBP挑战的年份进行分割,以减少偏差。

数据集创建

  • 注释过程: 结合TAC KBP挑战的人工注释和众包注释,确保模型训练不偏向于预测错误正例。
  • 许可证: 数据集通过Linguistic Data Consortium发布,需要LDC许可证。

使用数据集的注意事项

  • 许可证: 使用数据集需遵守LDC许可证,LDC成员可免费访问,非成员需支付$25。
  • 引用信息: 引用原始数据集和修订版本时,需遵循相应的引用格式。

数据集版本信息

  • 原始版本: 由Zhang等人在2017年发布。
  • TACRED Revisited: 由Alt等人在2020年发布,提供了标签修正。
  • Re-TACRED: 由Stoica等人在2021年发布,提供了重新标记和修剪的版本。
AI搜集汇总
数据集介绍
main_image_url
构建方式
TACRED数据集的构建基于新闻电讯和网络文本,结合了TAC KBP挑战中可用的人类注释和众包技术。该数据集包含106,264个示例,涵盖了41种关系类型,或标记为无关系。构建过程中,特别注重对无关系样本的充分标注,以确保模型不会对现实世界文本中的假阳性产生偏见。
特点
TACRED数据集的特点在于其大规模的样本量、多样化的关系类型以及结合了专家和众包的注释方式。数据集采用分层划分,以减少数据偏差,并提供了原始、修订和重标记三个版本,以适应不同的研究需求。此外,数据集以英语为语言,遵循LDC许可。
使用方法
使用TACRED数据集时,用户需从Linguistic Data Consortium获取数据。数据集支持关系分类任务,并可通过HuggingFace的load_dataset方法加载,选择特定版本('original'、'revisited'或're-tacred')进行使用。用户在获取和使用数据时应遵守相应的版权和许可协议。
背景与挑战
背景概述
TACRED数据集,全称为The TAC Relation Extraction Dataset,是自然语言处理领域中关系提取任务的一个重要数据集。该数据集创建于2017年,由斯坦福大学的研究团队开发,旨在为关系提取任务提供大规模的标注数据。TACRED基于每年举办的TAC KBP挑战赛的语料库构建,包含了106,264个实例,涵盖了41种关系类型。数据集结合了来自TAC KBP挑战赛的人类标注和众包方式生成的标注,对自然语言处理领域的研究具有重要的推动作用。
当前挑战
在TACRED数据集的研究与使用过程中,面临的挑战主要包括:1) 数据集中关系类型的多样性和复杂性,为关系分类任务带来了挑战;2) 数据集构建过程中,如何确保标注质量,减少众包方式可能引入的误差;3) 数据集可能存在的偏差和局限性,例如,数据集中79.5%的例子被标记为无关系,可能导致模型对真实世界文本中的关系预测过于保守;4) 数据集的规模和结构可能对某些应用场景下的模型训练和推理效率产生影响。
常用场景
经典使用场景
在自然语言处理领域,TACRED数据集的经典使用场景主要在于关系提取任务,该任务旨在识别文本中实体之间的语义关系。TACRED以其丰富的关系类型和标注质量,为研究者提供了一个理想的训练和评估平台,使得模型能够准确捕捉如人物组织关系、地理位置关系等多种类型的信息。
衍生相关工作
基于TACRED数据集,学术界衍生出了一系列相关工作,包括对数据集本身的改进,如TACRED Revisited和Re-TACRED,它们分别对原始数据集进行了重新评估和标签修正,提高了数据集的质量。此外,还有许多研究工作利用TACRED数据集在关系提取任务上取得了显著成果,推动了关系提取领域的发展。
数据集最近研究
最新研究方向
TACRED数据集作为关系提取领域的重要资源,近期研究主要聚焦于提升模型对细粒度关系类型的识别能力,以及对无关系实例的准确判断。学者们通过引入位置感知注意力机制、监督数据增强等方法,不断优化模型性能。同时,针对TACRED数据集的修订版本,如TACRED Revisited和Re-TACRED,研究社区正致力于评估不同版本数据集对模型性能的影响,以及它们在促进公平、减少偏差方面的作用。这些研究不仅推动了关系提取任务的进展,也为自然语言处理领域提供了宝贵的数据资源和评估基准。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

UCM-Captions, Sydney-Captions, RSICD, RSITMD, NWPU-Captions, RS5M, SkyScript

UCM-Captions: 包含613张图像,分辨率为256×256。Sydney-Captions: 包含2,100张图像,分辨率为500×500。RSICD: 包含10,921张图像,分辨率为224×224。RSITMD: 包含4,743张图像,分辨率为256×256。NWPU-Captions: 包含31,500张图像,分辨率为256×256。RS5M: 包含超过500万张图像,分辨率为所有可能的分辨率。SkyScript: 包含520万张图像,分辨率为所有可能的分辨率。

github 收录

KAIST dataset

KAIST数据集,用于多光谱行人检测。

github 收录

QM9

QM9数据集包含134k个有机小分子化合物的量子化学计算结果,涵盖了12个量子化学性质,如分子能量、电离能、电子亲和能等。

quantum-machine.org 收录